Заказать математическое программирование — решение на заказ онлайн

Заказать математическое программирование
Здравствуйте! Я Людмила Анатольевна Фирмаль, занимаюсь помощью студентам более 17 лет. У меня своя команда грамотных, сильных преподавателей. Мы справимся с любой поставленной перед нами работой технического и гуманитарного плана. И неважно – она по объёму на две формулы или огромная, сложно структурированная, на 125 страниц! Нам по силам всё, поэтому не стесняйтесь, присылайте.
Если что-то непонятно, Вы всегда можете написать мне в воцап и я помогу!

Как заказать выполнение заданий по математическому программированию

Вы можете написать сообщение в WhatsApp. После этого я оценю ваш заказ и укажу стоимость и срок выполнения вашей работы. Если условия Вас устроят, Вы оплатите, и преподаватель, который ответственен за вашу работу, начнёт выполнение и в согласованный срок или, возможно, раньше срока Вы получите файл готовой работы в личные сообщения.

Сколько может стоить заказ математического программирования

Стоимость заказа зависит от задания и требований Вашего учебного заведения. На цену влияют: сложность, количество заданий и срок выполнения. Поэтому для оценки стоимости заказа максимально качественно сфотографируйте или пришлите файл задания, при необходимости, загружайте поясняющие фотографии лекций, файлы методичек, указывайте свой вариант.

Какой срок выполнения заказа

Минимальный срок выполнения заказа составляет 2-4 дня, но помните, срочные задания оцениваются дороже.

Как оплатить заказ

Сначала пришлите задание, я оценю, после вышлю вам форму оплаты, в которой можно оплатить с баланса мобильного телефона, картой Visa и MasterCard, apple pay, google pay.

Гарантии и исправление ошибок

В течение 1 года с момента получения Вами готового решения заказа действует гарантия. В течении 1 года я и моя команда исправим любые ошибки в заказе.

Чуть ниже я предоставила примеры оформления заказов по некоторым темам математического программирования, так я буду оформлять ваши работы если закажите у меня, это не все темы, это лишь маленькая часть их, чтобы вы понимали насколько подробно я оформляю.

На данной странице рассматриваются заказы математического программирования, постоянно встречающиеся в экономической практике. Заказы математического программирования содержат, как правило, много переменных и ограничений и не допускают решений в виде формул. Решения могут быть получены только путем итераций, работа по реализаций которых может выполняться или вручную, или, чаще всего, на ЭВМ.

Возможно эта страница вам будет полезна:

Предмет математическое программирование

В первом примере рассматривается экономико-производственная задача, для которой строится математическая модель и приведен пример ее решения симплекс-методом и двойственным симплекс-методом.

Во втором примере оригинальный простой алгоритм решения транспортной задачи в сетевой постановке, позволяющий получить оптимальное распределение продукта с указанием объемов и маршрутов поставки даже в случае, когда ограничения задачи являются несовместными, приведен алгоритм и рассмотрен пример решения задачи о максимальном потоке, не связанным с графическим представлением сети.

Решение заказов математического программирования

Для решения конкретной прикладной задачи строится математическая модель, а именно: определяются целевая функция (критерий оптимальности) и система ограничений, которые являются линейными функциями относительно выбранных переменных. В системе ограничений могут быть неравенства вида Решение математического программирования на заказ и равенства. Для решения задачи полученная математическая модель приводится к каноническому виду, к левой части ограничений вида Решение математического программирования на заказ добавляются неотрицательные дополнительные переменные, а к ограничениям вида Решение математического программирования на заказ — неотрицательные дополнительные переменные со знаком «-» и знак неравенства заменяется на знак равенства.

Если в полученной системе уравнений есть допустимое базисное решение (случай I: все базисные компоненты плана неотрицательны), то, исключив базисные переменные из целевой функции, если они в ней есть, полученную каноническую задачу решают симплекс-методом.

Если есть базисное решение, но оно не является допустимым (случай 2: среди базисных переменных есть отрицательные) и после исключения базисных переменных из целевой функции в Решение математического программирования на заказ-строке симплекс-таблицы нет отрицательных чисел (за исключением Решение математического программирования на заказ), то задачу можно решать двойственным симплекс-методом.

В случае отсутствия базисного решения для использования сим-плекс-метода необходимо воспользоваться методом искусственного базиса. Заметим, что в случае 2 для решения задачи также можно воспользоваться методом искусственного базиса, так как допустимое базисное решение отсутствует.

Возможно эта страница вам будет полезна:

Решение задач по математическому программированию

Пример оформления заказа №1.

Продукция может изготавливаться па любом из трех видов оборудования. Трудоемкость и себестоимость производства центнера продукции па каждом оборудовании даны в таблице.

Решение математического программирования на заказ

Сколько нужно изготовить продукции на каждом оборудовании, чтобы ее суммарная себестоимость была минимальной при условии, что трудовые ресурсы ограничены 660 п-ч, а общее количество произведенной продукции должно быть не менее 60 ц?

Решение:

Построим математическую модель задачи. Обозначим через Решение математического программирования на заказ, количество продукции, в центнерах, выпускаемой на Решение математического программирования на заказ-м оборудовании. Тогда целевая функция строится по суммарной себестоимости, а ограничения по трудовым ресурсам и общему количеству произведенной продукции

Решение математического программирования на заказ

Данную задачу можно решать как симплекс-методом, так и двойственным симплекс-методом. Рассмотрим оба метода. Приведем задачу к канонической:

Решение математического программирования на заказ

Для полученной системы уравнений существует базисное решение: свободные

Решение математического программирования на заказ

и базисные

Решение математического программирования на заказ

переменные.

Однако это решение не является допустимым Решение математического программирования на заказ, но если записать Решение математического программирования на заказ-строку симплекс-таблицы для этой задачи, то она не содержит отрицательных элементов, т. е. имеет место случай 2, и задача может быть решена двойственным симплекс-методом.

Умножим второе ограничение на -1 и заполним первоначальную симплекс-таблицу.

Решение математического программирования на заказ

Построенный начальный базисный план не является оптимальным, так как есть отрицательные значения базисных переменных. Вторая строка является разрешающей. Подсчитаем

Решение математического программирования на заказ

следовательно, второй столбец будет разрешающим, а элемент Решение математического программирования на заказ — разрешающим элементом. Переменная Решение математического программирования на заказ вводится в базис, a Решение математического программирования на заказ — выводится.

Методом Жордана-Гаусса переходим к следующей таблице.

Решение математического программирования на заказ

Получим оптимальный план задачи, так как все базисные переменные плана неотрицательны:

Решение математического программирования на заказ

Вместе с тем для решения этой задачи можно воспользоваться методом искусственного базиса. Для этого во второе ограничение введем искусственную переменную Решение математического программирования на заказ и решим вспомогательную задачу минимизации искусственной целевой функции

Решение математического программирования на заказ

Исключаем базисную переменную Решение математического программирования на заказ из целевой функции, если она в ней есть, и искусственную базисную переменную из искусственной целевой функции. Данные шагов алгоритма будем заносить в таблицы.

Решение математического программирования на заказ

В Решение математического программирования на заказ-строке есть отрицательные значения, следовательно, начальный опорный план расширенной задачи не оптимален.

В качестве разрешающего столбца выберем второй и подсчитаем

Решение математического программирования на заказ

Значит, разрешающей строкой будет вторая, а разрешающим элементом Решение математического программирования на заказ. Методом Жордана-Гаусса переходим к следующей таблице.

Решение математического программирования на заказ

Так как искусственная переменная Решение математического программирования на заказ ушла из базиса Решение математического программирования на заказ=0, то первый этап решения расширенной задачи симплекс-методом завершен. Мало того, мы получили оптимальный план задачи

Решение математического программирования на заказ

трудовые ресурсы остались неизрасходованными в количестве 120 н-ч,

Решение математического программирования на заказ

Решение заказа транспортной задачи

Транспортная задача является математической моделью широкого круга задач, которые чаще других встречаются в практических приложениях линейного программирования. Ее классическая формулировка состоит в следующем.

Имеется Решение математического программирования на заказ источников однородного продукта или взаимозаменяемых продуктов и Решение математического программирования на заказ пунктов его потребления (или стоков). Заданы объемы продукта Решение математического программирования на заказ у каждого источника (или его мощность) и размеры спроса Решение математического программирования на заказ (мощность) каждого стока. Известны также затраты Решение математического программирования на заказ, связанные с перемещением единицы продукта из источника Решение математического программирования на заказ в сток Решение математического программирования на заказ. Кроме того, объем перемещаемого продукта из источника Решение математического программирования на заказ в сток Решение математического программирования на заказ не может превышать величины Решение математического программирования на заказ (пропускной способности коммуникации). Требуется составить план перемещения продукта из источников в стоки, наиболее экономным путем обеспечивающий максимальное удовлетворение спроса всех стоков (пунктов потребления), т. е. указать объемы Решение математического программирования на заказ, перемещаемого продукта из каждого источника Решение математического программирования на заказ в каждый сток Решение математического программирования на заказ, при которых общие затраты, связанные с этим перемещением, будут минимальными.

Таким образом, исходными данными для транспортной задачи являются:

векторы

Заказать работу по математическому программированию

мощности источников и стоков соответственно;

матрица затрат

Заказать работу по математическому программированию

матрица пропускных способностей коммуникаций

Заказать работу по математическому программированию

Построим математическую модель сформулированной задачи. План перемещения продукта обозначим через

Заказать работу по математическому программированию

Тогда суммарные затраты , связанные с этим перемещением из всех источников во все стоки, выражаются суммой

Заказать работу по математическому программированию

Если суммарная мощность источников

Заказать работу по математическому программированию

равна суммарной мощности стоков

Заказать работу по математическому программированию

то транспортная задача называется замкнутой. Тогда условия полного удовлетворения спроса (мощности) каждого стока имеют вид

Заказать работу по математическому программированию

Весь продукт из каждого источника должен быть перемещен в стоки. Формально это означает, что

Заказать работу по математическому программированию

Кроме того, объемы переносимого продукта — неотрицательные числа, которые не могут превышать пропускных способностей соответствующих коммуникаций, т. е. должны выполняться условия

Заказать работу по математическому программированию

Таким образом, формально транспортная задача сводится к минимизации целевой функции (2.1), при условии, что переменные удовлетворяют ограничениям (2.2)—(2.4).

Очевидно, что для любой матрицы Заказать работу по математическому программированию удовлетворяющей условиям (2.2)-(2.4), имеют место неравенства

Заказать работу по математическому программированию

Поэтому если

Заказать работу по математическому программированию

для всех

Заказать работу по математическому программированию

то мы имеем классическую транспортную модель. Условимся, что если

Заказать работу по математическому программированию

то будем считать пропускную способность этой коммуникации равной любому числу, большему чем

Заказать работу по математическому программированию

Следует отметить, что во многих прикладных задачах суммарная мощность источников может превосходить суммарную мощность стоков:

Заказать работу по математическому программированию

Такая задача называется открытой транспортной моделью. Открытую модель можно свести к замкнутой.

В первом случае вводится фиктивный сток Заказать работу по математическому программированию с мощностью Заказать работу по математическому программированию. Размеры остатка продукта Заказать работу по математическому программированию у каждого источника Заказать работу по математическому программированию можно регулировать в зависимости от введенного штрафа за единицу оставшегося у Заказать работу по математическому программированию-го источника продукта. Часто полагают Заказать работу по математическому программированию Заказать работу по математическому программированию. Пропускные способности Заказать работу по математическому программированию, коммуникаций, ведущих в фиктивный сток, пе ограничены, т. е. равны любому числу, большему чем

Заказать работу по математическому программированию

Во втором случае вводится фиктивный источник Заказать работу по математическому программированию с мощностью Заказать работу по математическому программированию. Размер неудовлетворенной мощности Заказать работу по математическому программированию Заказать работу по математическому программированию-го стока может регулироваться величиной ущерба Заказать работу по математическому программированию. Если ущерб для всех стоков одинаков, то полагают

Заказать работу по математическому программированию

Пропускные способности

Заказать работу по математическому программированию

не ограничены, т.е. равны любому числу, большему чем величина Заказать работу по математическому программированиюЗаказать работу по математическому программированию соответственно.

В силу вышесказанного в дальнейшем будем рассматривать замкнутую транспортную модель, т. е. полагая, что

Заказать работу по математическому программированию

В случае когда ограничения на пропускные способности отсутствуют (Заказать работу по математическому программированию для любых Заказать работу по математическому программированию ), задача решается методом потенциалов. В противном случае можно использовать его модификацию, однако она неудобна для программной реализации, и даже на стадии построения первоначального опорного плана требуется использование метода искусственного базиса. Поэтому для ее решения целесообразным является использование двойственного метода, основанного на сетевой постановке задачи.

Вначале рассмотрим транспортную задачу без ограничений на пропускные способности коммуникаций (классическую транспортную задачу) с вектором мощностей источников Заказать работу по математическому программированию, стоков Заказать работу по математическому программированию и матрицей

Заказать работу по математическому программированию

Процесс решения начинается с предварительного этапа — построения первоначального опорного плана методом «северозападного угла» или методом минимального элемента, который использован в данном примере.

Заказать работу по математическому программированию

Цифры, стоящие в скобках около строк и столбцов матрицы Заказать работу по математическому программированию, обозначают номер шага, на котором соответствующие строки и столбцы вычеркиваются. Цифры в скобках над элементами матрицы Заказать работу по математическому программированию обозначают номер шага, на котором определяются ее соответствующие элементы, а над столбцами вектора Заказать работу по математическому программированию и около строк вектора Заказать работу по математическому программированию — номера шагов, на которых они принимают указанные значения. Поскольку после 6-го шага в первой строке нет ни одного иевычеркнутого элемента, она может быть вычеркнута (правило вычеркивания). То есть положительные компоненты матрицы Заказать работу по математическому программированию не образуют цикл, их число равно 6 Заказать работу по математическому программированию. Таким образом, в результате предварительного этапа получен исходный опорный план транспортной задачи, множество базисных компонент

Заказать работу по математическому программированию

Заказать работу по математическому программированию — все остальные компоненты плана Заказать работу по математическому программированию.

Итерация 1. Определяем потенциалы, отвечающие исходному опорному плану путем решения системы уравнений

Заказать работу по математическому программированию

Полагая Заказать работу по математическому программированию, последовательно вычисляем и,

Заказать работу по математическому программированию
Заказать работу по математическому программированию

Вычисляем величины

Заказать работу по математическому программированию
Заказать работу по математическому программированию

План не является оптимальным, так как

Заказать работу по математическому программированию
Заказать работу по математическому программированию

Улучшение плана осуществляется за счет увеличения компоненты —Заказать работу по математическому программированию, добавление ее к базисным компонентам порождает единственный цикл

Заказать работу по математическому программированию

Определяем

Заказать работу по математическому программированию

Увеличиваем нечетные компоненты цикла (помеченные знаком «+») и уменьшаем четные (помеченные знаком «-») на величину Заказать работу по математическому программированию = 1 и получаем новый опорный план (пустые клетки соответствуют нулевым компонентам плана).

Заказать работу по математическому программированию

Итерация 2. Множество базисных компонент

Заказать работу по математическому программированию

Заказать работу по математическому программированию — все остальные компоненты плана.

Определяем потенциалы для полученного опорного плана:

Заказать работу по математическому программированию

Полагая Заказать работу по математическому программированию последовательно вычисляем

Заказать работу по математическому программированию
Заказать работу по математическому программированию

Вычисляем величины

Заказать работу по математическому программированию
Заказать работу по математическому программированию

Поскольку все величины неотрицательны, то план является решением нашей задачи.

Рассмотрим теперь общую транспортную задачу с ограниченными пропускными способностями в сетевой постановке.

На плоскости отмечаются (кружками) источники (с номерами 1, 2, …, Математическое программирование на заказ) и стоки (с номерами Математическое программирование на заказ), а также отмечаются фиктивный источник и сток с номерами Математическое программирование на заказ соответственно (рисунок).

Математическое программирование на заказ

Если принять пропускную способность коммуникации Математическое программирование на заказ, равной Математическое программирование на заказ, коммуникации Математическое программирование на заказ, равной Математическое программирование на заказ, а стоимости переноса по ним единицы продукта, равными 0, то задача может быть сформулирована следующим образом: построить максимальный поток продукта из фиктивного источника Математическое программирование на заказ в фиктивный сток Математическое программирование на заказ, стоимость которого минимальна. Понятно, что величина потока Математическое программирование на заказ по любой коммуникации Математическое программирование на заказ не может превышать ее пропускной способности Математическое программирование на заказ. Суммарный объем продукта, перемещаемого из каждого источника Математическое программирование на заказ, равен величине продукта, перемещаемого в Математическое программирование на заказ из фиктивного источника Математическое программирование на заказ, а суммарный объем продукта, перемещаемого в каждый сток Математическое программирование на заказ, равен величине продукта, перемещаемого из Математическое программирование на заказ в фиктивный сток Математическое программирование на заказ.

Введем в рассмотрение векторы модифицированных мощностей

Математическое программирование на заказ

матрицы модифицированных стоимостей

Математическое программирование на заказ

и пропускных способностей

Математическое программирование на заказ

порядка

Математическое программирование на заказ

определенных следующим образом:

Математическое программирование на заказ

Опишем алгоритм решения транспортной задачи. Не уменьшая общности, предположим, что Математическое программирование на заказ, если Математическое программирование на заказ для всех Математическое программирование на заказ.

Общая итерация. Осуществляем тернарные операции над элементами матрицы модифицированных стоимостей

Математическое программирование на заказ

последовательно по всем

Математическое программирование на заказ

полагая

Математическое программирование на заказ

для всех

Математическое программирование на заказ

Одновременно с выполнением операций (2.5) изменяем элементы вспомогательной матрицы Математическое программирование на заказ порядка Математическое программирование на заказ Математическое программирование на заказ(первоначально полагаем Математическое программирование на заказ):

Математическое программирование на заказ

Если

Математическое программирование на заказ

задача решена. В противном случае с помощью вспомогательной матрицы Математическое программирование на заказ определяем множество индексов

Математическое программирование на заказ

где

Математическое программирование на заказ

и множество

Математическое программирование на заказ

Находим

Математическое программирование на заказ

и вычисляем:

Математическое программирование на заказ
Математическое программирование на заказ

Переходим к общей итерации.

После окончания работы алгоритма находим матрицу

Математическое программирование на заказ

где

Математическое программирование на заказ

которая является решением задачи.

Если одно из ограничений не выполнено, то это означает, что исходная задача не имеет допустимых решений.

Тем не менее полученный план является оптимальным планом перемещения максимально возможного количества продукта из источников в стоки при данных ограничениях.

Проиллюстрируем работу алгоритма на рассмотренном выше примере:

Математическое программирование на заказ
Математическое программирование на заказ

Формируем матрицы модифицированных стоимостей и пропускных способностей:

Математическое программирование на заказ

Прочерки вместо элементов матрицы означают сколь угодно большое число (оо).

После осуществления общей итерации получим

Математическое программирование на заказ

Так как

Математическое программирование на заказ

с помощью матрицы Математическое программирование на заказ находим

Математическое программирование на заказ

и изменяем матрицы

Математическое программирование на заказ
Математическое программирование на заказ

После осуществления над этими матрицами еще семи операций получаем матрицы Математическое программирование на заказ:

Математическое программирование на заказ

Так как Математическое программирование на заказ, с помощью матрицы Математическое программирование на заказ определяем множество индексов

Математическое программирование на заказ

Находим Математическое программирование на заказ и вычисляем

Математическое программирование на заказ

Новые матрицы Математическое программирование на заказ

Математическое программирование на заказ
Математическое программирование на заказ

После осуществления тернарных операций над матрицей Математическое программирование на заказ получим Математическое программирование на заказ , т. е. задача решена, оптимальное решение

Математическое программирование на заказ

при значении целевой функции Математическое программирование на заказ.

Пример оформления заказа №2.

Тернарной операцией над матрицей Математическое программирование на заказ по индексу Математическое программирование на заказ называется операция

Математическое программирование на заказ

для всех Математическое программирование на заказ.

Рассмотрим вспомогательную матрицу Математическое программирование на заказ, элементы которой Математическое программирование на заказ. Одновременно с выполнением тернарной операции элементы матрицы Математическое программирование на заказ изменяются по следующему правилу:

Математическое программирование на заказ

Эти операции являются основой метода построения максимального потока в многополюсной сети. Опишем алгоритм решения задачи.

Подготовительный этап. Для начальной потоковой матрицы Математическое программирование на заказ (как правило, на начало работы алгоритма Математическое программирование на заказ для всех Математическое программирование на заказ) формируем модифицированную матрицу пропускных способностей Математическое программирование на заказ, полагая

Математическое программирование на заказ

Математическое программирование на заказ — индексы источника и стока соответственно.

Общая итерация. Осуществляем тернарные операции над матрицей

Математическое программирование на заказ

последовательно по всем индексам

Математическое программирование на заказ

Если в полученной в результате матрице

Математическое программирование на заказ

алгоритм заканчивает работу. В противном случае переходим к шагу 1.

Шаг 1.

Математическое программирование на заказ

С помощью вспомогательной матрицы

Математическое программирование на заказ

находим путь

Математическое программирование на заказ

вдоль которого можно увеличить поток на максимально возможную величину Математическое программирование на заказ. Здесь

Математическое программирование на заказ

Далее полагаем

Математическое программирование на заказ

Переходим к общей итерации. Проиллюстрируем работу алгоритма на следующем примере.

Возможно эта страница вам будет полезна:

Примеры решения задач по математическому программированию

Пример оформления заказа №3.

Найти максимальный поток из вершины 1 в вершину 7 в сети, заданной матрицей пропускных способностей дуг

Математическое программирование на заказ

Решение:

Полагаем

Математическое программирование на заказ

Итерация 1. Получаем

Математическое программирование на заказ

Так как Математическое программирование на заказ, с помощью матрицы Математическое программирование на заказ находим увеличивающий путь:

Математическое программирование на заказ

Находим матрицы:

Математическое программирование на заказ

Итерация 2.

Математическое программирование на заказ

Находим матрицы:

Математическое программирование на заказ

Итерация 3.

Математическое программирование на заказ

Находим матрицы

Математическое программирование на заказ

Итерация 4.

Математическое программирование на заказ

Находим матрицы:

Математическое программирование на заказ

Итерация 5.

Математическое программирование на заказ

Алгоритм закончил работу. Потоковая матрица

Математическое программирование на заказ

Если элемент Математическое программирование на заказ матрицы Математическое программирование на заказ отрицателен, то это означает, что поток величины Математическое программирование на заказ переносится из вершины Математическое программирование на заказ в вершину Математическое программирование на заказ.

Возможно эти страницы вам будут полезны:

  1. Помощь по математическому программированию
  2. Задачи математического программирования
  3. Задача линейного программирования
  4. Примеры решения задач по линейному программированию
  5. Решение задач по линейному программированию
  6. Методы решения задач линейного программирования
  7. Графическое решение задач линейного программирования
  8. Графический метод решения задач линейного программирования
  9. Заказать работу по линейному программированию
  10. Помощь по линейному программированию
  11. Контрольная работа линейное программирование
  12. Линейное программирование в Excel
  13. Курсовая работа по линейному программированию