Физика — задачи с решением и примерами

Оглавление:

Прежде чем изучать готовые решения задач по физике, нужно знать формулы, поэтому для вас я подготовила формулы по предмету «физика», после которых, чуть ниже размещены подробные решения задач по физике.

Эта страница подготовлена для школьников и студентов любых специальностей и охватывает курс предмета «физика».

На этой странице я собрала все формулы по всем темам физики и подробные решения задач по физике для школьников и студентов, чтобы вы смогли подготовиться к экзамену или освежить память перед контрольной работой!

Если что-то непонятно — вы всегда можете написать мне в WhatsApp и я вам помогу!

Физика

Физика – наука, изучающая наиболее общие закономерности явлений природы, свойства и строение материи и законы ее движения.

Физические законы устанавливаются на основе обобщения опытных фактов и выражают закономерности, существующие в природе. Эти законы обычно формулируются в виде количественных соотношений между различными физическими величинами.

Механика

Механика изучает механическое движение тел. Механическим движением называют изменение положения тел относительно друг друга с течением времени.

Механику разделяют на кинематику, динамику и статику.

Кинематика — раздел механики, где изучают движение тел, не рассматривая причины, влияющие на их движение.

Динамика — раздел механики, где изучают движение тел с учетом причин, влияющих на их движение.

Статика — раздел механики, где изучают условия равновесия тел.

Кинематика

Параметрами кинематики, т.е. величинами, описывающими движение тел, являются: путь S, перемещение Задачи по физике, время t, скорость v, ускорение а.

Путь S — это длина траектории тела. Путь — скалярная величина.

Перемещение Задачи по физике — это вектор, соединяющий начальное и конечное положения тела, и направленный к конечному положению.

Единица пути и модуля перемещения в Системе Интернациональной (СИ) — метр (м). Метр — основная единица СИ.

В процессе движения путь может только увеличиваться, а перемещение — и увеличиваться, и уменьшаться, например, когда вы поворачиваете обратно. При прямолинейном движении в одном направлении путь равен модулю перемещения, а при криволинейном — путь больше модуля перемещения. Когда вы едете на такси, то платите за путь, а когда на поезде, то за перемещение. Если, выйдя из дому, вы через некоторое время вернулись обратно, то ваше перемещение равно нулю, а путь равен длине траектории вашего движения. Существует тело, относительно которого ваше перемещение всегда равно нулю, — это ваше собственное тело.

Время t — это количественная мера протяженности процесса. Время — скалярная и всегда положительная величина. Единица времени в СИ — секунда (с). Секунда — основная единица СИ.

Скорость v — это количественная характеристика быстроты перемещения. Скорость (по модулю) при равномерном движении — это отношение пути ко времени, за которое этот путь пройден. Скорость — векторная величина. Направление вектора скорости Задачи по физике совпадает с направлением вектора перемещения Задачи по физике. Единица скорости в СИ — метр в секунду (м/с или м • Задачи по физике).

Путь при равномерном движении определяется формулой:

Задачи по физике

При движении с переменной скоростью различают среднюю и мгновенную скорости.

Средняя путевая скорость — это отношение пути ко времени, за которое этот путь пройден.

Мгновенная скорость — это скорость в данный момент времени или в данной точке траектории.

Мгновенная скорость равна первой производной координаты тела по времени.

Спидометр автомобиля показывает мгновенную скорость, а когда говорят, что скорость самолета 400 м/с, имеют в виду его среднюю скорость.

Быстроту изменения скорости характеризует ускорение а.

Ускорение а (по модулю) при равноускоренном движении — это отношение изменения скорости ко времени, за которое это изменение произошло.

Задачи по физике

Ускорение — векторная величина. Вектор ускорения а совпадает по направлению с вектором изменения скорости Ди. Единица ускорения в СИ — метр на секунду за секунду (м/с2 или м • Задачи по физике).

При любом переменном движении среднее ускорение есть отношение изменения скорости ко времени, за которое это изменение произошло.

Мгновенное ускорение есть первая производная скорости по времени или вторая производная координаты по времени.

Чтобы описать движение тела, нужно выбрать систему отсчета.

Система отсчета — это система координат в сочетании с телом отсчета и прибором для измерения времени (часами).

Дополнительная теория:

Задачи с решением по темам: механика и кинематика

  1. Задача В1. Тело проехало путь 20 м за 5 с. Какой путь оно проедет за 10 с, если его скорость увеличить на 40% ?
  2. Задача В2. Поезд начал двигаться равноускоренно с ускорением 2 и за 10 с проехал некоторый путь. Найти скорость поезда в средней точке этого пути.
  3. Задача ВЗ. Расстояние между двумя прибрежными поселками катер проходит по течению за 40 мин, а обратно — за 1 ч. За какое время проплывут это расстояние плоты?
  4. Задача В4. Путь, пройденный материальной точкой, движущейся равномерно по окружности радиусом 6,28 см, изменяется с течением времени согласно уравнению (см). Чему равна угловая скорость точки?
  5. Задача В5. Камень брошен с некоторой высоты в горизонтальном направлении со скоростью . Через сколько времени вектор скорости камня будет направлен под углом к горизонту? Сопротивлением пренебречь.
  6. Задача В6. Уравнение движения материальной точки . В какой координате скорость точки станет равна нулю?
  7. Задача В7. Тело половину пути прошло со скоростью 36 км/ч, а вторую половину со скоростью 54 км/ч. Найти среднюю скорость на всем пути.
  8. Задача В8. Эскалатор метро поднимает неподвижно стоящего пассажира за 2 мин. По неподвижному эскалатору пассажир поднимется за 2,5 мин. За сколько времени эскалатор поднимет идущего по нему пассажира? Движение равномерное.
  9. Задача В9. Частота вращения колеса увеличилась. Как изменились его угловая скорость, линейная скорость точек обода колеса и их центростремительное ускорение?
  10. Задача В10. Винт самолета вращается с частотой 1800 об/мин. Посадочная скорость самолета 54 км/ч, длина посадочной линии 700 м. Сколько оборотов сделает винт за время торможения?
  11. Задача С1. Начальная скорость материальной точки 4 м/с. Вначале точка движется замедленно с модулем ускорения . Найти весь путь, который она проделает за 10 с, двигаясь с постоянным по модулю ускорением?
  12. Задача C2. Ракета стартовала с земли вертикально вверх, двигаясь равноускоренно с ускорением . Через 10 с двигатель ракеты заглох. Через сколько времени она упадет на землю? Сопротивлением воздуха пренебречь.
  13. Задача СЗ. Колонна солдат длиной 20 м движется по шоссе со скоростью 3,6 км/ч. Командир, находящийся в хвосте колонны, посылает солдата с вопросом к сержанту, шагающему во главе колонны. Солдат бежит туда и обратно со скоростью, превышающей скорость колонны на 20%. Через сколько времени солдат доставит командиру ответ сержанта, если он слушал его в течение 0,5 мин?
  14. Задача С4. Камень бросили вниз с начальной скоростью 2 м/с. Время его падения на землю равно 3 с. Чему равна средняя скорость падения камня на оставшейся до земли третьей части всей высоты его падения? Сопротивлением воздуха пренебречь.
  15. Задача С5. Маленький мячик бросили с земли под углом 60° к горизонту со скоростью 5 м/с в вертикальную стену, расположенную на расстоянии 1,5 м от места бросания. Под каким углом к горизонту отскочит мячик после абсолютно упругого удара о стену? Сопротивлением воздуха пренебречь.
  16. Задача С6. Горизонтальная платформа равномерно вращается вокруг вертикальной оси, проходящей через ее центр. На расстоянии, равном трети радиуса платформы, отрывается от ее поверхности небольшое тело и скользит по ней без трения. Через сколько времени тело слетит с платформы, если до отрыва оно двигалось с ускорением 0,1 ? Радиус платформы 60 см.
  17. Задача С7. Свободно падающее без начальной скорости тело за первую секунду проходит некоторый путь, а последний такой же путь оно проходит за 0,4 с. С какой высоты упало тело?
  18. Задача C8. Два автомобиля движутся co скоростями 36 км/ч и 54 км/ч под углом = 60° друг к другу. В некоторый момент времени один из них оказался в пункте М, а другой в тот же момент — в пункте N, расстояние между которыми S = 10 км.
  19. Задача С9. Мимо остановки по прямой улице проезжает грузовик, двигаясь равномерно со скоростью 10 м/с. Через 5 с от остановки ему вдогонку отъезжает мотоциклист с ускорением . На каком расстоянии от остановки мотоциклист догонит грузовик?
  20. Задача С10. Сбегая по эскалатору с одной скоростью, мальчик насчитал ступенек, а когда он увеличил скорость в полтора раза, он насчитал на SN ступенек больше. Сколько ступенек N насчитает мальчик, спускаясь с первой скоростью по неподвижному эскалатору?

Динамика

Динамика — это раздел механики, который изучает взаимодействия тел, причины движения и тип движения, которое происходит. Взаимодействие — это процесс, при котором определённые тела оказывают взаимное влияние друг на друга. В физике все взаимодействия обязательно сопряжены. Это означает, что тела взаимодействуют друг с другом парами. То есть любое действие обязательно вызывает реакцию.

Дополнительная теория:

Статика

Статистика (от греч. στατoς, «неподвижный») представляет собой раздел механики, в котором изучаются условия равновесия механических систем под действием сил и моментов, приложенных к ним.

Дополнительная теория:

Гидромеханика

Гидромеханика — это прикладной раздел механики сплошных сред, который изучает движение жидкости, условия ее равновесия и взаимодействия с различными твердыми телами, поверхностями или препятствиями, которые смачиваются или омываются ею.

Дополнительная теория:

Задачи с решением по темам: динамика, статика и гидромеханика

  1. Задача B1. На рис. 120 изображена наклонная плоскость высотой h = 60 см с невесомым блоком на ее вершине. Через блок перекинута невесомая и нерастяжимая нить, к концам которой прикреплены грузы с массами = 0,5 кг и = 0,6 кг. Найти ускорение грузов, если длина наклонной плоскости l = 1 м и коэффициент трения груза массой о плоскость . Ответ округлить до десятых долей м/с2.
  2. Задача B2. На какой высоте Н ускорение свободного падения вчетверо меньше, чем на земной поверхности? Радиус Земли 6400 км.
  3. Задача ВЗ. Движение материальной точки задано уравнением . Определить импульс этой точки через 5 с, считая от момента начала отсчета времени движения, если ее масса 100 г.
  4. Задача В4. 4 одинаковых бруска толщиной 2 см каждый плавают в воде (рис. 121). Насколько изменится глубина погружения брусков, если снять один брусок?
  5. Задача В5. Тонкая однородная доска массой 2 кг упирается одним концом в угол между стенкой и полом, а к другому концу доски привязан канат (рис. 122). Определить силу натяжения каната, если угол между доской и канатом прямой, а между доской и полом он равен 60°.
  6. Задача B6. Шар, на треть объема погруженный в воду, лежит на дне сосуда и давит на дно с силой, равной половине веса шара. Плотность воды . Найти плотность шара. Ответ округлить с точностью до целого числа.
  7. Задача В7. Вес тела в воде , а в масле . Плотность воды , а плотность масла . Найти плотность тела.
  8. Задача В8. Начальная скорость тела 8 м/с. При его движении на тело действует сила сопротивления, модуль которой пропорционален скорости тела согласно закону , где коэффициент пропорциональности k = 0,2 кг/с. Масса тела 2 кг. Какой путь пройдет тело до остановки?
  9. Задача В9. Два груза массами 800 г и 200 г связаны невесомой и нерастяжимой нитью, перекинутой через блок (рис. 123). Блок вращается без трения. С какой скоростью левый груз, двигаясь без начальной скорости, достигнет пола, если вначале он располагался на высоте 1 м над ним? Сопротивлением пренебречь.
  10. Задача В10. Четвертая часть горизонтального стержня изготовлена из меди. Ее масса 2 кг. Масса остальной — стальной части стержня 4 кг. Длина всего стержня 1 м. Найти положение центра тяжести стержня относительно его медного конца.
  11. Задача В11. Спутник переходит на более удаленную от Земли круговую орбиту. Как при этом изменяются линейная скорость спутника на орбите, период его обращения, кинетическая энергия, потенциальная энергия? Полная механическая энергия спутника остается постоянной.
  12. Задача C1. К концам однородного стержня длиной Z = 1,8 м приложены силы (рис. 125). Найти силу натяжения стержня на расстоянии четверти длины от его левого конца.
  13. Задача С2. На краю горизонтальной доски, вращающейся вокруг вертикальной оси, проходящей через ее центр, укреплена нить с подвешенным к ней маленьким тяжелым шариком. Длина нити 20 см, частота вращения доски 1 об/с. При вращении доски нить отклоняется от вертикали на угол 30° (рис. 126). Найти длину доски. Ответ округлить до сотых долей метра.
  14. Задача С3. Лыжник массой 80 кг спустился с горы высотой 30 м и после спуска проехал еще по горизонтальной поверхности до остановки 150 м (рис. 128). Найти силу сопротивления на горизонтальном участке, если на горе она была равна нулю.
  15. Задача C4. Гиря, положенная сверху на вертикальную пружину, сжимает ее на 1 мм. Если эту гирю бросить на пружину со скоростью 0,2 м/с с высоты 10 см, то какова теперь будет деформация пружины?
  16. Задача С5. Через невесомый блок перекинута нить, к концам которой прикреплены грузы кг. К грузу массой подвесили на нити груз массой кг (рис. 129). Найти силу натяжения нити между грузами .
  17. Задача С6. На дне ящика находится шар, удерживаемый нитью в равновесии (рис. 130). На какой максимальный угол можно отклонить ящик от горизонтальной поверхности, чтобы шар остался в равновесии, если коэффициент трения шара о дно ящика равен 0,5? Весом нити пренебречь.
  18. Задача C7. Шарик из материала, плотность которого в n раз меньше плотности воды, падает в воду с высоты Н. На какую максимальную глубину h погрузится шарик?
  19. Задача С8. Два одинаковых бруска массами по 20 г каждый соединены упругой вертикальной пружиной с жесткостью 300 Н/м (рис. 131, а). Нажатием на верхний брусок пружину сжали так, что ее деформация стала 5 см (рис. 140, б). Какова будет скорость центра масс этой системы тел в момент отрыва нижнего бруска от стола? Сопротивление не учитывать.
  20. Задача С9. Брусок массой М лежит на горизонтальном столе. Его пробивает пуля, летевшая параллельно поверхности стола со скоростью v. Пробив брусок, пуля вылетает в том же направлении с вдвое меньшей скоростью. При этом брусок передвигается по столу на расстояние S. Чему равен коэффициент трения бруска о поверхность стола?
  21. Задача С10. Внутри полого шара диаметром D находится маленький кубик. Шар вращается с частотой v вокруг оси , проходящей через его центр. На какую высоту h поднимется кубик, перемещаясь по поверхности шара в процессе его вращения? Трением пренебречь.
  22. Задача С11. Геостационарный спутник находится на высоте Н над одной и той же точкой планеты массой М, вращающейся вокруг своей оси с угловой скоростью со. Найти среднюю плотность вещества планеты .
  23. Задача С12. Маленький шарик массой m, подвешенный на невесомой нити длиной I, движется по окружности (рис. 63). Угол отклонения нити от вертикали а. За какое время шарик сделает полный оборот?
  24. Задача С13. По желобу ав с высоты h скатывается маленький кубик массой m (рис. 133). На конце желоба кубик отрывается под углом а к горизонту и пролетает отрезок вс в течение времени t. Найти работу сил трения при движении бруска по желобу. Сопротивлением воздуха пренебречь.
  25. Задача C14. Два шара массами кг движутся горизонтально и поступательно навстречу друг другу со скоростями и неупруго сталкиваются. Найти изменение механической энергии шаров .
  26. Задача С15. Шарик массой m, летящий горизонтально со скоростью , абсолютно упруго ударяется о неподвижный шар массой М, висящий на нити длиной l. Удар центральный. На какой угол отклонится шар массой М после удара (рис. 134)?
  27. Задача C16. Ядро атома, имевшее кинетическую энергию , распалось на два осколка равной массы, которые разлетелись со скоростями . Под каким углом а друг к другу разлетелись осколки, если их общая кинетическая энергия после распада стала равна ?
  28. Задача C17. Небольшое тело соскальзывает с вершины полусферы радиусом R (рис. 136). На какой высоте h тело сорвется с поверхности полусферы и полетит вниз? Трение не учитывать.
  29. Задача C18. К концам двух вертикальных пружин одинаковой длины с жесткостями 10 Н/м и 30 Н/м подвешен стержень массой 3 кг длиной 2 м (рис. 137). На каком расстоянии от конца стержня, к которому прикреплена пружина с жесткостью 10 Н/м, надо подвесить груз, чтобы стержень остался в горизонтальном положении и при этом пружины удлинились на 20 см?
  30. Задача С19. С края полусферы радиусом R, вершина которой лежит на горизонтальной плоскости, по внутренней поверхности полусферы скатывается без трения маленький кубик массой т и ударяется о другой маленький кубик вдвое большей массы, лежащий в самом низу полусферы. Какое количество теплоты выделится в результате неупругого удара?

Молекулярная физика

Молекулярная физика — это раздел физики, который изучает физические свойства тел на основе изучения их молекулярной структуры. Задачи молекулярной физики решаются методами статистической механики, термодинамики и физической кинетики, они связаны с изучением движения и взаимодействия частиц (атомов, молекул, ионов), составляющих физические тела.

Дополнительная теория:

Термодинамика

Термодинамика (греч. θέρμη — «тепло», δύναμις — «сила») — это раздел физики, который изучает наиболее общие свойства макроскопических систем и методы передачи и преобразования энергии в таких системах.

Дополнительная теория:

Задачи с решением по темам: молекулярная физика и термодинамика

  1. Задача B1. В колбе объемом 1,5 л содержится атомов гелия. Какова средняя кинетическая энергия атомов? Давление газа в колбе Па.
  2. Задача В2. Вычислить среднюю квадратичную скорость молекул газа, если его масса m = 6 кг, объем и давление р = 200 кПа.
  3. Задача ВЗ. На сколько процентов увеличивается средняя квадратичная скорость молекул воды в нашей крови при повышении температуры от 37 до 40 °C?
  4. Задача В4. Газ сжат изотермически от объема до объема . Давление при этом возросло на . Каким было начальное давление ?
  5. Задача В5. Определить температуру газа, находящегося в закрытом сосуде, если давление газа увеличивается на 0,4 % первоначального давления при нагревании на 1 К.
  6. Задача В6. Современные вакуумные насосы позволяют понижать давление до . Сколько молекул газа содержится в при указанном давлении и температуре 27 °C?
  7. Задача В7. Где больше молекул: в комнате объемом при давлении Па и температуре 20 °C или в стакане воды объемом ?
  8. Задача В8. Чему равна средняя квадратичная скорость молекул газа, если его масса m = 6 кг, объем и давление р = 200 кПа?
  9. Задача В9. Три сферы радиусами 4 см, 8 см и 10 см заполнены газом и соединены тонкими трубками, перекрытыми кранами (рис. 165). Давление газа в левой сфере 0,2 МПа, давление газа в средней сфере 0,4 МПа, давление газа в правой сфере 0,8 МПа. Каким станет давление газа, если оба крана открыть?
  10. Задача В10. В баллоне находится газ при температуре 15 °C. Во сколько раз уменьшится давление газа, если 40 % его выйдет из баллона, а температура при этом понизится на 8 °C?
  11. Задача В11. В баллоне с газом имелась щель, через которую газ просачивался. При нагревании этого газа его температура повысилась в 3 раза, а давление увеличилось в 1,5 раза. Во сколько раз изменилась масса газа в баллоне?
  12. Задача В12. Ампула объемом 1 содержит воздух при нормальных условиях. Ампула оставлена в космосе, в ней пробито отверстие. Через сколько времени давление в ампуле станет равно 0, если из нее каждую секунду вылетает 100 миллионов молекул?
  13. Задача В13. В аудитории объемом температура воздуха повысилась с 20 “С до 30 °C. Атмосферное давление Па, молярная масса воздуха 0,029 кг/моль, Какая масса воздуха вышла из комнаты?
  14. Задача В14. При переходе определенной массы газа из одного состояния в другое его давление уменьшается, а температура увеличивается. Как при этом меняется его объем?
  15. Задача В15. В 3 л воды при 40 °C бросили 50 г льда при -4 °C. Какая установилась температура после того, как весь лед растаял? Удельная теплоемкость воды , удельная теплоемкость льда , удельная теплота плавления льда .
  16. Задача В16. В герметически закрытом сосуде находятся 5 моль идеального одноатомного газа при 27 °C. Какое количество теплоты надо передать этому газу, чтобы его давление увеличилось в 3 раза?
  17. Задача В17. Какое количество теплоты нужно передать 2 моль идеального одноатомного газа, чтобы изобарно увеличить его объем в 3 раза, если начальная температура 300 К?
  18. Задача В18. На рис. 166 изображен график зависимости температуры куба со стороной 10 см от выделенного им количества теплоты. Плотность вещества куба 7000 . Определить удельную теплоемкость вещества. Ответ округлить до целого числа.
  19. Задача В19. С какой скоростью v должна вылететь из ружья свинцовая дробинка при выстреле, сделанном вертикально вниз с высоты h = 50 м, чтобы при ударе о камень она полностью расплавилась? Начальная температура дробинки = 400 К, температура плавления свинца = 600 К. Удельная теплоемкость свинца с = 0,13 кДж/(кг • К), удельная теплота плавления свинца = 25 кДж/кг.
  20. Задача В20. На рис. 167 изображен термодинамический цикл в координатах р — V, происходящий в газе. При этом цикле внутренняя энергия газа увеличилась на 500 кДж. Какое количество теплоты было передано газу?
  21. Задача В21. Температуру холодильника идеального теплового двигателя уменьшили, а температуру нагревателя оставили прежней. При этом количество теплоты, полученное газом от нагревателя, тоже не изменилось. Как изменялись работа газа за цикл, количество теплоты, отданное холодильнику, и КПД двигателя?
  22. Задача С1. В горизонтально расположенной трубке, запаянной с одного конца, находится столбик ртути длиной l, запирающий столбик воздуха. Трубку поворачивают вертикально открытым концом вверх и нагревают воздух в ней на . При этом объем воздуха в трубке не изменяется. Давление наружного воздуха в комнате . Найти температуру воздуха в комнате.
  23. Задача С2. В цилиндре под поршнем находится газ. Масса поршня m, площадь его основания S. С какой силой надо давить на поршень, чтобы объем воздуха под ним уменьшился вдвое и при этом температура воздуха будет повышена на 60% ? Атмосферное давление нормальное. Трением пренебречь.
  24. Задача СЗ. Воздушный шар имеет объем 200 . Температура воздуха снаружи 17 °C, температура воздуха внутри шара 127 °C. Давление атмосферы Па, в шаре имеется отверстие. Шар движется вверх равномерно. Сопротивлением пренебречь. Найти массу нерастяжимой оболочки шара.
  25. Задача С4. Идеальный одноатомный газ расширяется (рис. 168) сначала изобарно (участок 1-2), а потом адиабатно (участок 2-3 графика). При адиабатном расширении газ совершил работу 27 кДж. Температура газа в состоянии 1 равна температуре в состоянии 3. Найти работу расширения газа в процессе 1 -2-3.
  26. Задача С5. Идеальный одноатомный газ, находящийся в теплоизолированном сосуде объемом Vпод давлениемр, заперт поршнем массой М (рис. 169). Справа поршень удерживают упоры 1 и 2, не давая газу расширяться. В поршень попадает пуля массой пг, летящая горизонтально со скоростью v, и застревает в нем. Считая, что всю механическую энергию поршень передаст газу, определить, во сколько раз повысится температура газа. Процесс в газе изобарный.
  27. Задача С6. В цилиндре под двумя одинаковыми тонкими поршнями находится сжатый идеальный газ. Расстояния от дна цилиндра до нижнего поршня и от нижнего поршня до верхнего одинаковы и равны h. Давление воздуха под верхним поршнем вдвое больше атмосферного. Вся система находится в равновесии. На верхний поршень надавливают так, что он опускается на место нижнего, сжимая газ. Каким станет расстояние х от нижнего поршня до дна сосуда? Атмосферное давление постоянно.
  28. Задача С7. Агрегат мощностью 50 кВт охлаждается проточной водой, текущей со скоростью 4 м/с по охватывающей агрегат трубке радиусом 5 мм. Начальная температура воды 10 °C. До какой температуры нагревается вода, если половина тепловой мощности агрегата идет на ее нагревание? Удельная теплоемкость воды 4200 Дж/(кг • К).
  29. Задача С8. Тепловой двигатель совершает круговой цикл, соответствующий графику на рис. 170. Цикл состоит из двух изохор 1-2 и 3-4, и двух адиабат 2-3 и 4-1. Найти КПД этого цикла.
  30. Задача С9. В калориметр налита вода массой 0,4 кг при 10 °C. В воду положили 0,6 кг льда при -40 °C. Определить температуру после установления теплового равновесия. Удельная теплоемкость воды 4200 Дж/(кг * К), удельная теплоемкость льда 2100 Дж/(кг * К), удельная теплота плавления льда Дж/кг.
  31. Задача С10. В калориметр налита вода массой 0,25 кг при температуре 25 °C. В эту воду впустили стоградусный пар массой 10 г. Теплоемкость калориметра 1000 Дж/К, Удельная теплоемкость воды 4200 Дж/(кг • К), удельная теплота парообразования Дж/К. Найти температуру при тепловом равновесии этих тел.
  32. Задача С10 молей идеального газа нагрели на 100 К. В процессе нагревания давление газа росло прямо пропорционально его объему. Какое количество теплоты было сообщено газу?
  33. Задача С12. В идеальном газе происходит процесс, изображенный на рис. 171. Какое количество теплоты подведено к газу в этом процессе, начиная от состояния 1 и кончая состоянием 4?
  34. Задача С13. Идеальный одноатомный газ данной массы сначала изобарно переводят из состояния 1 в состояние 2, а затем его снова адиабатно переводят из состояния 1 в состояние 3 (рис. 172). Конечный объем газа в обоих процессах . Отношение количества теплоты, полученного газом в изобарном процессе, к модулю изменения внутренней энергии при адиабатном процессе равно 4. Во сколько раз работа при изобарном процессе больше работы при адиабатном процессе?
  35. Задача С14. Два теплоизолированных сосуда соединены узкой трубкой с закрытым краном, объемом которой можно пренебречь. В первом сосуде содержится молей идеального газа со средней квадратичной скоростью молекул , а во втором содержится молекул этого газа со средней квадратичной скоростью молекул . Все молекулы одинаковы. Какова будет их средняя квадратичная скорость молекул и, если кран открыть?
  36. Задача C15. В горизонтально расположенном цилиндрическом сосуде находится идеальный газ массой , закрытый поршнем массой . Вследствие изобарного расширения газа при его нагревании поршень приобретает скорость V, двигаясь из состояния покоя. Внутренняя энергия газа U прямо пропорциональна его абсолютной температуре, где k — коэффициент пропорциональности. Молярная масса газа М. Какое количество теплоты Q передано газу при этом? Теплоемкостями сосуда и поршня пренебречь.
  37. Задача C16. В цилиндрическом сосуде под поршнем находится 2 л водяного пара при 100 °C и давлении Па. Поршень опускают, и объем пара изобарно уменьшается вдвое. Какое количество теплоты отдает этот пар, если при этом его температура не изменяется? Удельная теплота парообразования Дж/ кг, молярная масса водяного пара 0,018 кг/моль.
  38. Задача С17. Посередине теплоизолированного и закрытого цилиндрического сосуда длиной l с площадью основания S располагается поршень, толщиной которого можно пренебречь. Справа от поршня в сосуде находится газ под давлением и при температуре , а слева вакуум. Поршень соединен с левым основанием цилиндра сжатой упругой пружиной жесткостью k. Длина пружины в недеформированном состоянии равна длине цилиндра. Поршень удерживается в неподвижном состоянии внешним воздействием. Какая установится температура газа , если поршень отпустить? Известно, что внутренняя энергия этого газа пропорциональна его температуре: U = СТ, где С — известный коэффициент пропорциональности. Трением и теплоемкостями цилиндра с поршнем можно пренебречь.
  39. Задача С18. Тонкостенный резиновый шар массой 40 г наполнен кислородом и погружен на глубину 20 м. Найти массу кислорода в шаре, если он находится в равновесии. Давление атмосферы Па, температура на глубине 3 °C. Растяжением и объемом оболочки шара пренебречь. Молярная масса кислорода 0,032 кг/моль, плотность воды 1000 .

Электромагнетизм

Электромагнетизм — это раздел физики, который изучает магнетизм электричество и взаимодействием между ними.

Дополнительная теория:

Краткая теория электромагнетизма

Электромагнетизм условно делят на электростатику, законы постоянного тока и магнетизм.

Электростатика

Электростатика — это раздел физики электричества, который изучает взаимодействие неподвижных электрических зарядов. Давно известно, что некоторые материалы, такие как янтарь, притягивают легкие предметы (пух, частицы пыли, кусочки бумаги).

Дополнительная теория:

Законы постоянного тока

Электрический ток — это направленное движение электрических зарядов вдоль проводника под действием сил электрического поля.

Дополнительная теория:

Магнетизм

Магнетизм — это форма взаимодействия движущихся электрических зарядов, осуществляемая на расстоянии с помощью магнитного поля. Наряду с электричеством магнетизм является одним из проявлений электромагнитного взаимодействия. С точки зрения квантовой теории поля электромагнитное взаимодействие осуществляется бозоном — фотоном (частицей, которую можно представить как квантовое возбуждение электромагнитного поля).

Дополнительная теория:

Задачи с решением по теме: электромагнетизм

  1. Задача B1. Масса электрона кг, а масса протона кг. Во сколько раз сила их кулоновского притяжения больше силы гравитационного притяжения?
  2. Задача В2. С одной капли воды массой m = 0,03 г на другую каплю перешел 1 % всех ее электронов. Расстояние между каплями 1 км. Определить, с какой кулоновской силой теперь будут взаимодействовать эти капли.
  3. Задача ВЗ. Два одинаковых маленьких шарика имеют заряды . Их привели в соприкосновение и раздвинули на прежнее расстояние. Определить, во сколько раз изменилась сила их кулоновского взаимодействия.
  4. Задача В4. Два положительных заряда Кл расположены на расстоянии 1 м друг от друга. Посередине между ними помещают отрицательный заряд Кл. Определить модуль и направление вектора силы, действующей на отрицательный заряд со стороны двух положительных зарядов.
  5. Задача В5. Определить период вращения электрона вокруг ядра в атоме водорода. Радиус орбиты электрона принять равным м.
  6. Задача В6. Точка М находится посередине между зарядами (рис. 284). Какой заряд надо поместить вместо заряда в точку 2, чтобы напряженность электрического поля в точке М увеличилась в 3 раза?
  7. Задача В7. Вектор напряженности однородного электрического поля направлен вниз, напряженность этого поля равна В/м. В это поле помещена капелька масла массой г. Капелька оказалась в равновесии. Найти заряд капельки и число избыточных электронов на ней.
  8. Задача В8. Три одинаковых точечных заряда по 1 нКл каждый расположены в трех вершинах квадрата со стороной 9 см. Найти напряженность результирующего поля в четвертой вершине. Среда — воздух.
  9. Задача В9. Разность потенциалов между электродами электронной пушки равна 500 В. Определить скорость вылетающих из нее электронов.
  10. Задача В10. Два заряда 4 нКл и 9 нКл расположены на расстоянии 20 см друг от друга. На каком расстоянии от меньшего заряда напряженность электрического поля этих зарядов равна нулю? Среда — вакуум.
  11. Задача В11. Отношение заряда электрона к его массе (удельный заряд электрона) м/с, его начальная скорость в электрическом поле равна м/с, а конечная м/с. Электрон перемещается по силовой линии поля. Определить разность потенциалов между начальной и конечной точками перемещения электрона.
  12. Задача В12. К конденсатору емкостью 10 пФ последовательно подключили два параллельных конденсатора емкостями 4 пФ и 6 пФ. Общий заряд этих конденсаторов 1 нКл. Чему равно общее напряжение на конденсаторах? Обозначим емкость первого конденсатора, — емкость второго конденсатора, — емкость третьего конденсатора, — общую емкость второго и третьего конденсаторов, С — общую емкость всей батареи конденсаторов, U — общее напряжение на батарее, q — общий заряд.
  13. Задача В13. Напряжение на обкладках конденсатора 200 В, расстояние между обкладками 0,2 мм. Конденсатор отключили от источника зарядов, после чего увеличили расстояние между обкладками до 0,7 мм. Определить новое напряжение на обкладках конденсатора.
  14. Задача В14. Между обкладками плоского конденсатора находится слюдяная пластинка с диэлектрической проницаемостью 6. Емкость конденсатора 10 мкФ, напряжение на его обкладках 1 кВ. Какую работу надо совершить, чтобы вынуть пластинку из конденсатора, не отключая его от источника напряжения?
  15. Задача В15. Плоский конденсатор состоит из двух обкладок площадью 40 каждая. Между ними находится стекло с диэлектрической проницаемостью 7. Какой заряд находится на обкладках этого конденсатора, если напряженность электрического поля между ними 8 МВ/м?
  16. Задача В16. Два проводника с емкостями 4 пФ и 6 пФ заряжены соответственно до потенциалов 8 В и 10 В. Найти их потенциал после соприкосновения друг с другом.
  17. Задача В17. Плоский воздушный конденсатор зарядили до напряжения 600 В и отключили от источника зарядов, после чего расстояние между обкладками увеличили от 0,2 мм до 0,7 мм и ввели диэлектрик с проницаемостью 7. Найти новое напряжение между обкладками
  18. Задача В18. При увеличении напряжения на обкладках конденсатора в три раза энергия его электрического поля увеличилась на 200 мДж. Найти начальную энергию конденсатора.
  19. Задача В19. Сопротивление медного проводника 0,2 Ом, его масса 0,2 кг, плотность меди 8900 кг/м3. Определить площадь поперечного сечения проводника.
  20. Задача В20. Длина медного проводника 300 м, напряжение на его концах 36 В, концентрация электронов проводимости в проводнике . Определить среднюю скорость упорядоченного движения электронов в этом проводнике.
  21. Задача В21. Чему равна энергия конденсатора емкостью 10 мкФ (рис. 237)? ЭДС источника тока 4 В, внутреннее сопротивление 1 Ом, сопротивления резисторов 10 Ом.
  22. Задача В22. На рис. 238 изображена схема электрической цепи. Когда ключ К разомкнут, вольтметр показывает 4 В, а когда ключ К замкнут, вольтметр показывает 3,8 В. Сопротивление резистора 2 Ом. Чему равно внутреннее сопротивление источника тока?
  23. Задача В23. Электрическая цепь состоит из источника тока и лампы с последовательно подключенным к ней амперметром и параллельно вольтметром (рис. 239). Вольтметр показывает напряжение 4 В, а амперметр силу тока 2 А. ЭДС источника тока 5 В. Найти внутреннее сопротивление источника тока. Обозначим U напряжение на лампе, I — силу тока в ней, — ЭДС источника тока, i— внутреннее сопротивление источника тока, R — сопротивление лампы.
  24. Задача В24. ЭДС источника тока 6 В. При внешнем сопротивлении 1 Ом сила тока в цепи 3 А. Найти силу тока короткого замыкания.
  25. Задача В25. ЭДС источника тока 4 В, внешнее сопротивление равно внутреннему. Найти напряжение на полюсах источника тока, когда цепь замкнута.
  26. Задача В26. Три лампы сопротивлением 12,5 Ом каждая соединены параллельно и подключены к источнику тока с ЭДС 10В и внутренним сопротивлением 0,5 Ом (рис. 289). Сопротивление соединительных проводов 2 Ом. Найти напряжение на лампах.
  27. Задача В27. К концам свинцовой проволоки длиной 2 м приложено напряжение 25 В. Начальная температура проволоки 10 °C. Через сколько времени проволока начнет плавиться? Температура плавления свинца 327 °C, его удельное сопротивление.
  28. Задача В28. В чайнике нагрели воду объемом 0,32 л при 30 °C и поставили на электроплитку. Через сколько времени выкипит вся вода, если сила тока в цепи 10 А, а сопротивление нагревателя 20 Ом? Удельная теплоемкость воды 4200 Дж/(кг • К), удельная теплота парообразования воды 2256 кДж/кг.
  29. Задача B29. Лифт массой 2,4 т поднимается на высоту 25 м за 40 с. КПД подъема 60%. Найти силу тока в электродвигателе лифта, если он работает под напряжением 220 В. Ответ округлить до целого числа ампер.
  30. Задача В30. Сколько электронов проходит за 10 с через поперечное сечение проводника при мощности тока в нем 150 Вт и напряжении 220 В? Ответ представьте как произведение целого числа на 1019.
  31. Задача В31. Трамвай массой m движется по горизонтальному пути со скоростью V. Коэффициент сопротивления движению р, напряжение на проводах U, КПД электрической цепи . Найти силу тока в двигателе.
  32. Задача В32. Включенная в сеть электрическая плитка выделила количество теплоты Q. Определить, какое количество теплоты выделят за такое же время две такие плитки, если их включить в ту же сеть последовательно и параллельно. Зависимость сопротивления от температуры можно не учитывать.
  33. Задача ВЗЗ. На рис. 240 изображена электрическая цепь, состоящая из двух гальванических элементов с ЭДС 4,5 В и 1,5 В и внутренними сопротивлениями 1,5 Ом и 0,5 Ом и лампы, сопротивление которой в нагретом состоянии 23 Ом. Определить мощность, потребляемую этой лампой.
  34. Задача В34. Мощность, потребляемая алюминиевой обмоткой электромагнита при 0 °C, равна 5 кВт. Какой станет мощность тока в обмотке, если температура повысится до 60 °C, а напряжение останется прежним? Какой станет мощность, если прежним останется ток?
  35. Задача В35. Электрическая цепь содержит реостат, сопротивление которого можно изменять от 0,1 Ом до 1 Ом. ЭДС источника тока 72 В. При каком сопротивлении реостата максимальная мощность тока в цепи будет 6 Вт?
  36. Задача В36. Три одинаковых источника постоянного тока с внутренним сопротивлением у каждого 0,8 Ом соединены последовательно. Во сколько раз изменится мощность тока в резисторе сопротивлением 10 Ом, подключенном к этим источникам, если их соединить параллельно?
  37. Задача В37. Напряжение на электродах при электролизе алюминия в 10 раз больше, чем при электролизе меди. Во сколько раз энергия при электролизе алюминия больше, чем при электролизе меди той же массы? Электрохимический эквивалент меди 0,33 мг/Кл, алюминия 0,093 мг/Кл. Ванны, в которых происходит электролиз, соединены последовательно. Ответ округлить до целого числа.
  38. Задача В38. При электролизе меди сопротивление электролита 1 мОм, напряжение на электродах 8 В. Через сколько времени на катоде выделится 1 кг меди? Электрохимический эквивалент меди 0,33 мг/Кл. Ответ округлить до целого числа минут.
  39. Задача В39. Сила тока в электрохимической ванне при электролизе 25 А, время электролиза 2 ч, площадь детали, покрываемой никелем, , электрохимический эквивалент никеля кг/Кл, его плотность . Определить толщину покрытия.
  40. Задача В40. На медном резисторе в течение 10 с поддерживали напряжение 2 В. Чему равна длина резистора, если его температура повысилась при этом на 8 К? Удельное сопротивление меди Ом • м, плотность меди , удельная теплоемкость меди 380 Дж/(кг • К). Изменением сопротивления резистора при нагревании и потерями тепловой энергии можно пренебречь. Ответ округлить до целого числа метров.
  41. Задача В41. Проводник массой 10 г и длиной 2 см висит неподвижно в магнитном поле индукцией 4 Тл. Найти силу тока в проводнике.
  42. Задача В42. В однородном магнитном поле индукцией 0,4 Тл находится прямой проводник длиной 0,15 м, расположенный перпендикулярно магнитным линиям. По проводнику идет ток силой 8 А. Под действием силы Ампера проводник перемещается на 0,025 м. Определить работу, совершенную при перемещении.
  43. Задача В43. Электрон влетел в однородное магнитное поле индукцией В перпендикулярно магнитным линиям. Через какое время он окажется в точке влета? Масса и заряд электрона известны.
  44. Задача В44. Электрон, имеющий кинетическую энергию 91 эВ, влетел в скрещенные электрическое и магнитное поля, в которых векторы напряженности и магнитной индукции взаимно перпендикулярны. Вектор скорости электрона перпендикулярен силовым линиям обоих полей. Чему равна индукция магнитного поля, если электрон в этих полях стал двигаться равномерно и прямолинейно при напряженности электрического поля 100 В/см?
  45. Задача В45. Круглый проволочный виток диаметром 50 см расположен своей плоскостью перпендикулярно магнитным линиям однородного магнитного поля индукцией 50 мТл. Сопротивление витка 2 Ом. Какой заряд протечет через поперечное сечение проводника, из которого изготовлен виток, при равномерном уменьшении магнитного поля до нуля? Явлением самоиндукции пренебречь.
  46. Задача В46. Сопротивление проводящего контура Ом. За 2 с пересекающий контур магнитный поток равномерно изменяется на Вб. Определить силу индукционного тока в проводнике.
  47. Задача В47. Индуктивность катушки с малым сопротивлением равна 0,15 Гн, сила тока в ней 4А. Сколько теплоты выделится в катушке, если параллельно к ней подключить резистор с сопротивлением, во много раз большим, чем сопротивление катушки.
  48. Задача В48. Катушка с площадью витка имеет индуктивность 20 мГн. Число витков в ней 1000, индукция магнитного поля внутри катушки 1 мТл. Найти силу тока в катушке.
  49. Задача В49. За 5 мс в соленоиде с 500 витками магнитный поток равномерно уменьшился с 7 Вб до 9 мВб. Сопротивление проводника соленоида 100 Ом. Найти силу индукционного тока, возникшего при этом.
  50. Задача В50. Проволочный виток, состоящий из 100 колец, пересекает однородное магнитное поле, уменьшающееся за 2 мс с 0,5 Тл до 0,1 Тл. При этом в витке возникает ЭДС индукции 8 В. Поле перпендикулярно плоскости витка. Найти радиус витка. Ответ округлить с точностью до одной сотой метра.
  51. Задача С1. Четыре одинаковых заряда расположены в вершинах квадрата и находятся в равновесии. Заряды соединены непроводящими ток нитями. Сила натяжения каждой нити 10 Н. Найти силу, действующую на каждый заряд со стороны двух ближайших к нему зарядов.
  52. Задача С2. Сторона равностороннего треугольника r. В двух его вершинах расположены два заряда , положительный и отрицательный (рис. 291). Определить напряженность поля этих зарядов в третьей вершине. Среда — вакуум.
  53. Задача СЗ. Горизонтальная равномерно и положительно заряженная плоскость создает однородное электрическое поле напряженностью Е = 5 кВ/м. На нее с высоты h = 2 м бросают вниз с начальной скоростью = 0,5 м/с маленький шарик массой т = 50 г, несущий положительный заряд q = 50 нКл. Найти скорость шарика в момент удара о плоскость.

Колебания и волны. Оптика. Теория относительности. Атомная физика

Механические колебания и волны

Механические колебания — это тип движения, при котором положение тела повторяется точно или почти точно через равные промежутки времени.

Дополнительная теория:

Электромагнитные колебания и волны

Электромагнитные колебания — периодические изменения напряжённости E и индукции B. Электромагнитными колебаниями являются микроволны , радиоволны, видимый свет, инфракрасное излучение, ультрафиолетовое излучение, гамма-лучи, рентгеновские лучи.

Дополнительная теория:

Геометрическая оптика

Геометрическая оптика — это отрасль оптики, которая изучает законы распространения света в прозрачных средах, отражения света от зеркально отражающих поверхностей и принципы формирования изображений, когда свет распространяется в оптических системах без учета его волновых свойств.

Дополнительная теория:

Волновая и квантовая оптика

Волновая и квантовая оптика — это отраслью оптики, которая изучает явления, в которых проявляются квантовые свойства света. К таким явлениям относятся: тепловое излучение, фотоэлектрический эффект, эффект Комптона, эффект Рамана, фотохимические процессы, вынужденное излучение (и, соответственно, лазерная физика).

Дополнительная теория:

Теория относительности. Физика атома

Теория относительности — это физическая теория пространства-времени, то есть теория, описывающая универсальные пространственно-временные свойства физических процессов.

Дополнительная теория:

Задачи с решением по темам: колебания и волны, оптика, теория относительности, атомная физика

  1. Задача B1. Пружинный маятник оттянули от положения равновесия на 1,5 см и отпустили. Какой путь пройдет маятник за 1 с, если период его колебаний 0,2 с?
  2. Задача В2. Уравнение гармонических колебаний маятника . Все величины выражены в единицах СИ. Через сколько времени, считая от момента t = 0, потенциальная энергия маятника станет равна его кинетической энергии?
  3. Задача ВЗ. Нить математического маятника отклонили от вертикали на угол а, и при этом он поднялся на высоту h над прежним положением. Чему стала равна циклическая частота колебаний маятника,когда его отпустили

Приложение

Сокращения единиц измерений

Задачи по физике

Физические константы

Задачи по физике
Задачи по физике

Единицы СИ

Основные

Задачи по физике

Дополнительные

Задачи по физике

Производные

Задачи по физике
Задачи по физике
Задачи по физике
Задачи по физике
Задачи по физике

Некоторые приставки для преобразования внесистемных единиц в СИ

Задачи по физике
Задачи по физике

Перевод некоторых единиц в СИ

Задачи по физике
Задачи по физике

Кстати у меня есть готовые задачи на продажу они тут.

Некоторые сведения из математики

Правила действия со степенями и корнями

Задачи по физике

Тождества сокращенного умножения

Задачи по физике — квадрат двучлена

Задачи по физике — куб двучлена

Задачи по физике— разность квадратов

Задачи по физике — разность кубов

Задачи по физике — сумма кубов

Тригонометрические функции острого угла

Задачи по физике

Теорема косинусов

Задачи по физике

Теорема синусов

Задачи по физике

Теорема Пифагора

Задачи по физике
Задачи по физике

Формулы корней квадратных уравнений

Задачи по физике

Значения тригонометрических функций некоторых углов

Задачи по физике

Тригонометрические функции половинного аргумента

Задачи по физике

Тригонометрические функции двойного аргумента

Задачи по физике

Формулы приведения

Задачи по физике

Основные тригонометрические тождества

Задачи по физике

Преобразование суммы тригонометрических функций и произведение

Задачи по физике

Площадь треугольника

Задачи по физике

Площадь квадрата

Задачи по физике

Площадь прямоугольника

Задачи по физике

Площадь трапеции

Задачи по физике

Площадь сферы радиусом R (диаметром D)

Задачи по физике

Площадь круга радиусом R (диаметром D)

Задачи по физике

Длина окружности радиусом R (диаметром D)

Задачи по физике

Объем сферы радиусом R (диаметром D)

Задачи по физике

Объем цилиндра высотой Н с радиусом основания R

Задачи по физике

Объем куба со стороной а

Задачи по физике

Объем конуса высотой Н с радиусом основания R

Задачи по физике

Дополнительные готовые примеры и задачи по всем темам физики

Физика — область науки о наиболее общих законах природы, о материи, её структуре, движении и правилах трансформации. Законы физики лежат в основе всего естествознания.

Физика – практическая наука. Она учит правильно выполнять измерения, обрабатывать их, рассчитывать погрешности и получать желаемый результат вместе с оценкой его достоверности.

Физика – теоретическая наука. Она учит быстро и правильно находить зависимости между измеряемыми величинами.

Роль физики в работе специалиста любого профиля заключается в том, чтобы обеспечить общее понимание механизма протекающих процессов и снабдить его зависимостями и формулами, которые позволяют рассчитать результаты этих процессов без ненужных измерений. Без такого понимания любая деятельность бесполезна, или даже вредна.

Физика в механике

Кинематика материальной точки и поступательного движения твердого тела

Механическое движение — это изменение положения тел или их частей относительно друг друга в пространстве с течением времени.

Материальная точка — это тело, размерами и формой которого при заданных условиях можно пренебречь, а всю массу считать сконцентрированной в одной точке.

Абсолютно твердое тело — это тело, деформациями которого можно пренебречь.

Поступательное движение — это движение, при котором любая прямая, связанная с движущимся абсолютно твердым телом, остается параллельной самой себе.

Траектория — это линия, которую описывает материальная точка при своем движении.

Положение материальной точки в пространстве определяется радиус-вектором Решение задач по физике — вектором, проведенным из начала координат в точку пространства, в которой находится данная материальная точка.
Перемещение Решение задач по физике тела — это вектор, проведенный из начального положения тела в его конечное положение,
Решение задач по физике
Мгновенная скорость тела — производная от радиус-вектора движущегося тела по времени Решение задач по физике:
Решение задач по физике
Мгновенная скорость характеризует направление и быстроту перемещения тела по траектории.

Ускорение тела — производная от скорости по времени или вторая производная от радиус-вектора движущегося тела по времени:
Решение задач по физике
При равномерном прямолинейном движении Решение задач по физике выполняется соотношение
Решение задач по физике
Уравнения движения тела с постоянным ускорением Решение задач по физике
Решение задач по физике
где Решение задач по физике — начальная скорость.
В криволинейном движении материальной точки полное ускорение Решение задач по физике — это векторная сумма тангенциального Решение задач по физике и нормального Решение задач по физикеускорений. Модуль полного ускорения Решение задач по физике
при этом Решение задач по физике

где Решение задач по физике — радиус кривизны в данной точке траектории.
Среднее значение модуля скорости тела в промежутке времени от Решение задач по физике до Решение задач по физике
Решение задач по физике
где Решение задач по физике— путь, пройденный точкой за промежуток времени Решение задач по физике

Задачи с решением:

Кинематика вращательного движения

Вращательное движение твердого тела — это движение, при котором все точки тела движутся по окружностям, центры которых лежат на одной и той же прямой, которая называется осью вращения.

Угловая скорость твердого тела — это производная от угла поворота по времени
Решение задач по физике
Угловое ускорение твердого тела — это производная от угловой скорости по времени или вторая производная от угла поворота по времени
Решение задач по физике
При равномерном вращательном движении вокруг неподвижной оси Решение задач по физике выполняется соотношение
Решение задач по физике
Уравнения равнопеременного вращательного движения
твердого тела вокруг неподвижной оси
Решение задач по физике
Решение задач по физике

Уравнения связи модулей угловых величин с модулями линейных:
Решение задач по физике
где Решение задач по физике — путь, пройденный точкой вращающегося тела (длина дуги) при повороте на угол Решение задач по физике за промежуток времени Решение задач по физике
Решение задач по физике — расстояние от точки до оси вращения;
Решение задач по физике — модуль тангенциального ускорения;
Решение задач по физике — модуль нормального ускорения.
Частотой Решение задач по физике при равномерном вращении называется число оборотов в единицу времени
Решение задач по физике
Периодом вращения Решение задач по физике называется время одного полного оборота.
Угловая скорость тела Решение задач по физике, вращающегося равномерно, связана с частотой Решение задач по физике и периодом вращения Решение задач по физике соотношением

Решение задач по физике

Задачи с решением:

Динамика поступательного движения

Сила — количественная мера взаимодействия тел.

Первый закон Ньютона: существуют такие системы отсчета, относительно которых тело движется равномерно прямолинейно или сохраняет’ состояние покоя, если действие сил на него равно нулю или скомпенсировано.

Импульс материальной точки — это векторная величина
Решение задач по физике
Полный импульс системы тел равен векторной сумме импульсов Решение задач по физике всех п ел, образующих систему:
Решение задач по физике
где Решение задач по физике масса и скорость Решение задач по физике тела, соответственно.

Второй закон Ньютона: скорость изменения импульса тела равна векторной сумме всех сил, действующих на тело:
Решение задач по физике
где Решение задач по физике — число действующих на тело сил.

Третий закон Ньютона: силы, с которыми два тела взаимодействуют друг с другом, равны по модулю и противоположны по направлению.

Силы в механике:
а) сила упругости (закон Гука)
Решение задач по физике
где Решение задач по физике — коэффициент упругости (в случае пружины — жесткость);
Решение задач по физике — то — абсолютная деформация удлинения (сжатия) тела;
Решение задач по физике — начальная длина тела;
Решение задач по физике — конечная длина тела.

Нормальным напряжением Решение задач по физике называется величина равная отношению модуля нормальной составляющей силы Решение задач по физике к площади поверхности Решение задач по физике, на которую действует сила: Решение задач по физике
Связь нормального напряжения Решение задач по физике с относительной деформацией растяжения (сжатия) тела Решение задач по физике
Решение задач по физике
где Решение задач по физике — модуль Юнга.
Связь тангенциального напряжения Решение задач по физике с деформацией сдвига Решение задач по физике
Решение задач по физике
где Решение задач по физике — модуль сдвига;
б) сила тяжести
Решение задач по физике
в) сила гравитационного взаимодействия (закон всемирного тяготения)
Решение задач по физике

где Решение задач по физике — гравитационная постоянная;
Решение задач по физике и Решение задач по физике — массы взаимодействующих тел;
Решение задач по физике — расстояние между телами (тела рассматриваются как материальные точки);
г) сила трения (скольжения)
Решение задач по физике
где Решение задач по физике — коэффициент трения;
Решение задач по физике— сила реакции опоры.
Параллельным соединением двух пружин с жесткостями Решение задач по физике и Решение задач по физике называется такое соединение, при котором абсолютные деформации пружин одинаковы: Решение задач по физике

Последовательным соединением двух пружин с жесткостями Решение задач по физике и Решение задач по физике называется такое соединение, при котором абсолютные деформации пружин различны: Решение задач по физике
Общая жесткость Решение задач по физике системы, состоящей из двух пружин с жесткостями Решение задач по физике и Решение задач по физике:
1) при параллельном соединении
Решение задач по физике
2) при последовательном соединении
Решение задач по физике

Задачи с решением:

Механическая энергия. Работа. Мощность. Законы сохранения в механике

Систему взаимодействующих тел называют замкнутой, если на нее извне не действуют внешние силы. Для замкнутой системы выполняется закон сохранения импульса: полный вектор импульса замкнутой системы есть величина постоянная:
Решение задач по физике
Закон сохранения импульса для двух тел, взаимодействующих по тиру упругого удара, имеет вид
Решение задач по физике
где Решение задач по физике и Решение задач по физике — скорости до упругого удара;
Решение задач по физике и Решение задач по физике — скорости тех же тел после упругого удара.
Закон сохранения импульса для двух тел, взаимодействующих по тиру неупругого удара, имеет вид
Решение задач по физике
где Решение задач по физике — скорости тел после неупругого удара.
Работа, совершаемая силой Решение задач по физике при элементарном перемещении Решение задач по физике:

Решение задач по физике
где Решение задач по физике — элементарный путь;
Решение задач по физике — угол между векторами Решение задач по физике и Решение задач по физике.
Работа переменной силы Решение задач по физике на пути Решение задач по физике
Решение задач по физике
Изменение полной энергии системы равно работе, совершенной внешними и внутренними силами, приложенными к системе:
Решение задач по физике
Кинетическая энергия тела массой Решение задач по физике, движущегося поступательно со скоростью Решение задач по физике:
Решение задач по физике
или
Решение задач по физике
Работа Решение задач по физике, совершаемая результирующей силой, определяется как мера изменения кинетической энергии тела:
Решение задач по физике.
Мощность — это физическая величина, равная работе, совершаемой в единицу времени:
Решение задач по физике

Консервативными называются силы, работа которых не зависит от траектории движения тела, а определяется только начальным и конечным положением тела в пространстве.

Если на систему материальных точек действуют консервативные силы, то вводят понятие потенциальной энергии. Работа Решение задач по физике, совершаемая консервативными силами, определяется потенциальными энергиями начальной и конечной конфигураций системы: Решение задач по физике
где Решение задач по физике — потенциальная энергия системы в начальной (1) и конечной (2) конфигурациях системы.

Потенциальная энергия:
а) упругодеформированной пружины
Решение задач по физике
где Решение задач по физике — жесткость пружины;
Решение задач по физике — абсолютная деформация пружины;
б) гравитационного взаимодействия
Решение задач по физике
где Решение задач по физике — гравитационная постоянная;
Решение задач по физике и Решение задач по физике — массы взаимодействующих тел;
Решение задач по физике — расстояние между телами (тела рассматриваются как материальные точки);
в) тела, находящегося в однородном поле силы тяжести
Решение задач по физике
где Решение задач по физике — ускорение свободного падения;
Решение задач по физике — высота тела над уровнем, принятым за нулевой (формула справедлива при условии Решение задач по физике, где Решение задач по физике — радиус Земли).
Связь силы Решение задач по физике, действующей в точке с координатами Решение задач по физике потенциального силового поля, с потенциальной энергией Решение задач по физике
Решение задач по физике

Закон сохранения полной механической энергии: полная механическая энергия замкнутой системы, в которой действуют только консервативные силы, с течением времени не изменяется
Решение задач по физике

Задачи с решением:

Момент инерции. Закон сохранения момента импульса

Момент импульса материальной точки относительно центра вращения
Решение задач по физике
где Решение задач по физике — вектор импульса точки;
Решение задач по физике — радиус-вектор точки.
Момент инерции материальной точки относительно оси вращения
Решение задач по физике
где Решение задач по физике — масса точки;
Решение задач по физике — расстояние точки до оси.

Момент инерции твердого тела равен сумме моментов инерции материальных точек, составляющих это тело,
Решение задач по физике
Моменты инерции некоторых однородных тел вращения относительно их геометрических осей вращения:
• тонкостенный цилиндр Решение задач по физике
• сплошной цилиндр Решение задач по физике
• шар Решение задач по физике
Момент инерции однородного тонкого стержня длиной Решение задач по физикеотносительно оси, проходящей через середину стержня перпендикулярно его длине, Решение задач по физике.

— расстояние точки до оси.
Момент инерции твердого тела равен сумме моментов инерции материальных точек, составляющих это тело,
Решение задач по физике
Моменты инерции некоторых однородных тел вращения относительно их геометрических осей вращения:
• тонкостенный цилиндр Решение задач по физике
• сплошной цилиндр Решение задач по физике
• шар Решение задач по физике
Момент инерции однородного тонкого стержня длиной Решение задач по физикеотносительно оси, проходящей через середину стержня перпендикулярно его длине, Решение задач по физике.

Теорема Штейнера. Момент инерции Решение задач по физике тела относительно любой оси вращения и момент инерции Решение задач по физике тела относительно оси, параллельной данной и проходящей через центр инерции тела, связаны соотношением
Решение задач по физике
где Решение задач по физике — масса тела;
Решение задач по физике — расстояние между осями.

Вектор момента импульса твердого тела относительно центра вращения равен произведению момента инерции тела на вектор его угловой скорости:
Решение задач по физике
Момент импульса системы тел есть векторная сумма моментов импульсов всех тел системы: Решение задач по физике

Закон сохранения момента импульса относительно точки Решение задач по физике: если результирующий момент внешних сил, приложенных к системе, равен нулю Решение задач по физике, то вектор момента импульса системы есть величина постоянная, т.е.
Решение задач по физике
Проекция на ось Решение задач по физике момента импульса тела, вращающегося относительно неподвижной оси Решение задач по физике:
Решение задач по физике
где Решение задач по физике — угловая скорость тела.
Закон сохранения момента импульса системы тел, вращающихся вокруг неподвижной оси Решение задач по физике: Решение задач по физике

где Решение задач по физике — момент инерции Решение задач по физике тела системы относительно оси вращения Решение задач по физике;
Решение задач по физике — угловая скорость вращения Решение задач по физике тела системы вокруг неподвижной оси Решение задач по физике.

Задачи с решением:

Динамика вращательного движения

Кинетическая энергия тела, вращающегося вокруг неподвижной оси Физика задачи с решением:
Физика задачи с решением или Физика задачи с решением
При повороте села относительно оси Физика задачи с решением на угол Физика задачи с решением совершается элементарная работа
Физика задачи с решением
Момент силы Физика задачи с решением относительно центра вращения
Физика задачи с решением
где Физика задачи с решением — радиус-вектор, проведенный из центра вращения в точку приложения силы.

Основное уравнение динамики вращательного движения
твердого тела относительно оси вращения

Физика задачи с решением
где Физика задачи с решением — результирующий момент всех внешних сил, приложенных к телу;
Физика задачи с решением — вектор углового ускорения;
Физика задачи с решением — момент инерции относительно оси вращения Физика задачи с решением;
Физика задачи с решением — результирующий момент внешних сил, действующих на тело, относительно оси Физика задачи с решением.

Задачи с решением:

Гидродинамика в физике

Уравнение неразрывности несжимаемой струи
Физика задачи с решением
где Физика задачи с решением — площадь поперечного сечения трубки тока;
Физика задачи с решением — средняя скорость жидкости по сечению Физика задачи с решением.
Уравнение Бернулли для стационарного течения идеальной несжимаемой жидкости
Физика задачи с решением
где Физика задачи с решением — скорость жидкости;
Физика задачи с решением — динамическое давление жидкости;
Физика задачи с решением — высота, на которой расположено сечение трубки тока;
Физика задачи с решением — гидростатическое давление;
Физика задачи с решением — статическое давление жидкости.

Сила внутреннего трения между слоями текущей жидкости определяется законом Ньютона для вязкости
Физика задачи с решением
где Физика задачи с решением — динамическая вязкость жидкости;
Физика задачи с решением — градиент скорости;
Физика задачи с решением — площадь соприкасающихся слоев.
Кинематическая вязкость жидкости Физика задачи с решением

Число Рейнольдса для потока жидкости в трубе Физика задачи с решением
где Физика задачи с решением — плотность жидкости;
Физика задачи с решением — средняя по сечению трубы скорость жидкости;
Физика задачи с решением — характерный поперечный размер трубы (радиус или диаметр).
Формула Стокса, определяющая силу внутреннего трения, действующую на медленно движущийся в вязкой среде шарик
Физика задачи с решением
где Физика задачи с решением — радиус шарика;
Физика задачи с решением — скорость шарика.
Формула Пуазейля для определения объема жидкости, протекающей за время Физика задачи с решением через капиллярную трубку длиной Физика задачи с решением:
Физика задачи с решением
где Физика задачи с решением — радиус трубки; Физика задачи с решением разность давления на концах трубки.
Лобовое сопротивление
Физика задачи с решением

где Физика задачи с решением — безразмерный коэффициент сопротивления;
Физика задачи с решением — плотность среды;
Физика задачи с решением — скорость движения тела;
Физика задачи с решением — площадь наибольшего поперечного сечения тела.

Задачи с решением:

Механические колебания

Смещение Физика задачи с решением, скорость Физика задачи с решением и ускорение Физика задачи с решением при гармоническом колебании определяются уравнениями

Физика задачи с решением
где Физика задачи с решением — амплитуда колебания;
Физика задачи с решением — циклическая частота;
Физика задачи с решением — начальная фаза.
Циклическая частота Физика задачи с решением, период колебаний Физика задачи с решением и частота Физика задачи с решением связаны соотношениями
Физика задачи с решением
При сложении двух одинаково направленных гармонических колебаний одинакового периода получается гармоническое колебание того же периода, амплитуда которого Физика задачи с решением и начальная фаза Физика задачи с решением определяются уравнениями
Физика задачи с решением

где Физика задачи с решением и Физика задачи с решением — амплитуды слагаемых колебаний;
Физика задачи с решением и Физика задачи с решением — их начальные фазы.

Условие гармоничности колебаний: результирующая сила Физика задачи с решением, действующая на тело при свободном гармоническом колебании (квазиупругая сила), всегда пропорциональна смещению Физика задачи с решением и направлена в сторону, противоположную смещению:
Физика задачи с решением
где Физика задачи с решением — коэффициент квазиупругой силы, численно равный силе, вызывающей смещение Физика задачи с решением равное единице.

При отсутствии сопротивления среды циклическая частота Физика задачи с решением свободных гармонических колебаний (собственная частота) и период колебаний Физика задачи с решением определяются соотношениями
Физика задачи с решением
Период колебаний математического маятника длиной Физика задачи с решением

Физика задачи с решением
Период колебаний физического маятника

Физика задачи с решением
где Физика задачи с решением момент инерции маятника относительно оси качания;
Физика задачи с решением — расстояние от оси до его центра тяжести.
Полная энергия материальной точки, совершающей гармонические колебания, постоянна Физика задачи с решением

Уравнение для смещения Физика задачи с решением затухающих колебаний при наличии силы сопротивления Физика задачи с решением, пропорциональной скорости (Физика задачи с решением, где Физика задачи с решением — коэффициент сопротивления), имеет вид
Физика задачи с решением
где Физика задачи с решением — убывающая по времени амплитуда смещения;
Физика задачи с решением — коэффициент затухания;
Физика задачи с решением — циклическая частота затухающих колебаний;
Физика задачи с решением — начальные амплитуда и фаза (определяется из начальных условий).
Значения Физика задачи с решением выражаются через параметры значения величин Физика задачи с решением формулами Физика задачи с решением

Логарифмический декремент затухания колебаний
Физика задачи с решением
где Физика задачи с решением и Физика задачи с решением — амплитуды двух последовательных колебаний. Амплитуда вынужденных колебаний
Физика задачи с решением
где Физика задачи с решением — отношение амплитуды вынуждающей силы к массе тела; Физика задачи с решением — собственная циклическая частота;
Физика задачи с решением — циклическая частота вынуждающей силы.
Резонансная циклическая частота при вынужденных колебаниях
Физика задачи с решением

Задачи с решением:

Волны в упругой среде. Звук в физике

Скорость Физика задачи с решением распространения волны, длина волны Физика задачи с решением, частота Физика задачи с решением, период Физика задачи с решением связаны соотношением
Физика задачи с решением
Уравнение бегущей волны
Физика задачи с решением
где Физика задачи с решением — смещение колеблющейся точки, находящейся на расстоянии х от источника колебаний;
Физика задачи с решением — циклическая частота;
Физика задачи с решением — начальная фаза колебаний;
Физика задачи с решением — амплитуда колебаний частиц среды;
Физика задачи с решением — волновое число.
Разность фаз Физика задачи с решением колебаний двух точек среды, расстояние
между которыми
Физика задачи с решением
Физика задачи с решением

где Физика задачи с решением — координаты двух точек среды.
Скорость распространения звуковых волн в упругой среде:

  • продольных: Физика задачи с решением
  • поперечных: Физика задачи с решением
    где Физика задачи с решением — модуль Юнга;
    Физика задачи с решением — модуль сдвига;
    Физика задачи с решением — плотность среды.
    Скорость распространения звуковых волн в газах
Физика задачи с решением

где Физика задачи с решением — отношение молярных теплоемкостей газов при постоянном давлении и при постоянном объеме;
Физика задачи с решением — универсальная газовая постоянная;
Физика задачи с решением — абсолютная температура;
Физика задачи с решением — молярная масса газа.
Частота основного тона струны
Физика задачи с решением

где Физика задачи с решением — длина струны;
Физика задачи с решением — плотность вещества струны;
Физика задачи с решением — площадь поперечного сечения струны;
Физика задачи с решением — сила натяжения струны.
Фазовая Физика задачи с решением и групповая и скорости, а также формула связи
между ними
Физика задачи с решением
Уравнение стоячей волны

Физика задачи с решением

Координаты пучностей и узлов при отражении от менее плотной среды

Физика задачи с решением

при отражении от более плотной среды

Физика задачи с решением

где Физика задачи с решением — длина бегущей волны; Физика задачи с решением

Задачи с решением:

Статистическая физика и термодинамика. Молекулярно-кинетическая теория идеальных газов

Основное уравнение молекулярно-кинетической теории газов
Физика задачи с решением
где Физика задачи с решением — число молекул в единице объема газа (концентрация);
Физика задачи с решением — масса одной молекулы газа;
Физика задачи с решением — давление газа на стенку сосуда;
Физика задачи с решением — квадрат средней квадратичной скорости молекул;
Физика задачи с решением — средняя кинетическая энергия поступательного движения одной молекулы газа;
Физика задачи с решением — абсолютная температура газа;
Физика задачи с решением — постоянная Больцмана.
Зависимость средней кинетической энергии поступательного и вращательного движения молекул от температуры
Физика задачи с решением
где Физика задачи с решением — число поступательных и вращательных степеней свободы молекул.
Скорости молекул:
средняя квадратичная Физика задачи с решением

средняя арифметическая Физика задачи с решением
наиболее вероятная Физика задачи с решением
где Физика задачи с решением — универсальная газовая постоянная.
Распределение молекул в поле сил тяжести (распределение Больцмана)
Физика задачи с решением
Распределение молекул по скоростям (распределение Максвелла)

Физика задачи с решением
где Физика задачи с решением — число молекул из общего числа Физика задачи с решением имеющих при температуре Физика задачи с решением скорости в интервале Физика задачи с решением.
Распределение молекул по составляющим скоростей
Физика задачи с решением

где Физика задачи с решением — число молекул из общего числа Физика задачи с решением имеющих скорости с составляющими вдоль координатных осей Физика задачи с решениемФизика задачи с решением лежащих в интервалах Физика задачи с решениемФизика задачи с решением.
Функция распределения молекул идеального газа по относительным скоростям
Физика задачи с решением
где Физика задачи с решением — относительная скорость.

Функция распределения молекул идеального газа по энергиям теплового движения
Физика задачи с решением

Число молекул, имеющих кинетическую энергию поступательного движения, заключенную в интервале от Физика задачи с решением до Физика задачи с решением
Физика задачи с решением
Барометрическая формула, выражающая убывание давления газов с высотой Физика задачи с решением над поверхностью Земли:
Физика задачи с решением

Задачи с решением:

Основы термодинамики в физике

Первое начало термодинамики в интегральной и дифференциальной формах соответственно
Физика задачи с решением
где Физика задачи с решением — количество теплоты, сообщенное системе или отданное системой;
Физика задачи с решением — изменение внутренней энергии системы;
Физика задачи с решением — работа системы против внешних сил.
Работа, совершаемая газом при изменении его объема
Физика задачи с решением
где Физика задачи с решением — давление газа;
Физика задачи с решением — начальный и конечный объемы газа.
Внутренняя энергия и изменение внутренней энергии идеального газа
Физика задачи с решением
где Физика задачи с решением — количество вещества;
Физика задачи с решением — масса газа;
Физика задачи с решением — молярная масса газа;
Физика задачи с решением — число степеней свободы молекулы.

Средняя кинетическая энергия поступательного движения, приходящаяся на одну поступательную степень свободы молекулы:
Физика задачи с решением
где Физика задачи с решением — постоянная Больцмана.
Средняя энергия молекулы
Физика задачи с решением
Теплоемкость газа массой Физика задачи с решением
Физика задачи с решением
Удельная теплоемкость газа
Физика задачи с решением
Молярная теплоемкость газа
Физика задачи с решением

Связь молярной Физика задачи с решением и удельной с теплоемкостей газа
Физика задачи с решением
Молярные теплоемкости идеального газа при постоянном объеме и постоянном давлении
Физика задачи с решением
Уравнение Майера
Физика задачи с решением
Уравнение адиабатного процесса (уравнение Пуассона) имеет вид
Физика задачи с решением
где Физика задачи с решением — показатель адиабаты.
Уравнение изотермического процесса
Физика задачи с решением
Уравнение политропного процесса
Физика задачи с решением
где Физика задачи с решением — показатель политропы;
Физика задачи с решением — теплоемкость при данном процессе.

Работа газа в физике

а) при изобарном процессе
Физика задачи с решением

б) при изотермическом процессе
Физика задачи с решением или Физика задачи с решением

в) в случае адиабатного процесса Физика задачи с решением или
Физика задачи с решением
где Физика задачи с решением — соответственно начальные и конечные температуры и объемы газа;

г) при политропном процессе
Физика задачи с решением

Коэффициент полезного действия (КПД) тепловой машины
Физика задачи с решением
где Физика задачи с решением — работа, совершенная рабочим веществом в течение цикла;
Физика задачи с решением — количество теплоты, полученной от нагревателя;
Физика задачи с решением — количество теплоты, отданное им холодильнику;
Физика задачи с решением и Физика задачи с решением — наибольшая и наименьшая температуры рабочего вещества.
Изменение энтропии тела в любом обратимом процессе, переводящем его из состояния Физика задачи с решением в состояние Физика задачи с решением, Физика задачи с решением
где Физика задачи с решением — элементарное количество теплоты, полученное веществом при температуре Физика задачи с решением.
Связь между энтропией и термодинамической вероятностью Физика задачи с решением (статистическим весом Физика задачи с решением)
Физика задачи с решением
где Физика задачи с решением — постоянная Больцмана.

Задачи с решением:

Реальные газы. Уравнение Ван-Дер-Вальса в физике

Уравнение Ван-дер-Ваальса для одного моля реального газа
Физика задачи с решением
где Физика задачи с решением — молярный объем;
Физика задачи с решением — объём всего газа;
Физика задачи с решением — количество вещества;
Физика задачи с решением — поправка на давление газа;
Физика задачи с решением — поправка на объем молекул;
Физика задачи с решением — объем одной молекулы;
Физика задачи с решением — эффективный диаметр молекулы;
Физика задачи с решением — число молекул.
Уравнение Ван-дер-Ваальса произвольной массы газа
Физика задачи с решением
Уравнение Ван-дер-Ваальса произвольной массы газа в вириальной форме имеет вид полинома
Физика задачи с решением

где Физика задачи с решением — коэффициенты, зависящие от температуры.
При небольших давлениях можно ограничиться двумя членами полинома
Физика задачи с решением
где Физика задачи с решением
Внутреннее давление, обусловленное силами межмолекулярного взаимодействия
Физика задачи с решением

Состояние, при котором газ и жидкость имеют одинаковые свойства, называется критическим.

Критические параметры объема, давления и температуры определяются через постоянные Физика задачи с решением и Физика задачи с решением для одного моля газа следующим образом:
Физика задачи с решением

где Физика задачи с решением — газовая постоянная, определяемая для каждого реального газа отдельно. Для состояний газа, далеких от критического, газовая постоянная может быть принята равной универсальной газовой постоянной Физика задачи с решением
Связь между постоянными Физика задачи с решением и Физика задачи с решением и параметрами Физика задачи с решением и Физика задачи с решением критического состояния реального газа
Физика задачи с решением
Внутренняя энергия одного моля реального газа
Физика задачи с решением
где Физика задачи с решением — молярная теплоемкость газа при постоянном объеме;
Физика задачи с решением — молярный объем;
Физика задачи с решением — абсолютная температура газа.

Задачи с решением:

Свойства жидкостей в физике

Относительное изменение объема жидкости при нагревании на Физика задачи с решением

Физика задачи с решением
где Физика задачи с решением — температурный коэффициент объемного расширения.
Относительное изменение объема жидкости при изменении давления на Физика задачи с решением
Физика задачи с решением
где Физика задачи с решением — коэффициент сжимаемости;
Физика задачи с решением — начальный объем жидкости.
Коэффициент поверхностного натяжения Физика задачи с решением
Физика задачи с решением

где Физика задачи с решением — сила, приложенная к единице длины Физика задачи с решением края поверхности пленки жидкости.
Добавочное давление, вызванное кривизной мениска, поверхности жидкости (формула Лапласа):
Физика задачи с решением

где Физика задачи с решением — радиусы кривизны, проведенные в двух взаимно перпендикулярных плоскостях;

Физика задачи с решением если мениск выпуклый;
Физика задачи с решением если мениск вогнутый.
При выпуклом мениске добавочное давление направлено внутрь жидкости. Если мениск вогнут, то жидкость находится под меньшим давлением, чем та же жидкость под плоской поверхностью. В случае сферической поверхности радиуса Физика задачи с решением добавочное давление определяется по формуле

Физика задачи с решением
Приращение свободной энергии поверхностного слоя жидкости при изменении его площади на Физика задачи с решением
Физика задачи с решением
Высота поднятия жидкости в капиллярной трубке с радиусом Физика задачи с решением

Физика задачи с решением
где Физика задачи с решением — краевой угол;
Физика задачи с решением — радиус капилляра;
Физика задачи с решением — плотность жидкости.
При полном смачивании Физика задачи с решением; при полном несмачивании Физика задачи с решением.
Энергия, выделяемая при слиянии нескольких малых капель в одну большую

Физика задачи с решением

где Физика задачи с решением — изменение площади поверхности жидкости;
Физика задачи с решением — коэффициент поверхностного натяжения жидкости.

Задачи с решением:

Явления переноса в физике

Средняя длина свободного пробега Физика задачи с решением молекул газа

Физика задачи с решением
где d — эффективный диаметр молекулы;
n — концентрация молекул.
Среднее число столкновений, испытываемых одной молекулой за секунду
Физика задачи с решением
где Физика задачи с решением — средняя арифметическая скорость молекул газа.
Относительное число молекул газа, пролетающих путь S без столкновений;
Физика задачи с решением
Общее число столкновений всех молекул друг с другом в единице объема за единицу времени

Физика задачи с решением

Коэффициенты диффузии D, динамической вязкости Физика задачи с решением и теплопроводности К
Физика задачи с решением
где Физика задачи с решением — плотность газа;
Физика задачи с решением — удельная теплоемкость газа при постоянном объеме.
Уравнение диффузии (закон Фика)
Физика задачи с решением
где dm — масса вещества, переносимого при диффузии за время dt через малую площадку dS, перпендикулярную к оси ОХ, вдоль которой осуществляется перенос;
Физика задачи с решением — градиент плотности.
Уравнение теплопроводности (закон Фурье)
Физика задачи с решением
где Физика задачи с решением — количество теплоты, передаваемое за время dt через малую площадку dS, перпендикулярную к оси ОХ, вдоль которой осуществляется перенос тепла;
Физика задачи с решением — градиент температуры.

Закон Ньютона для внутреннего трения


Физика задачи с решением
где dF — сила внутреннего трения между движущимися слоями
жидкости или газа площадью dS:
Физика задачи с решением — динамический коэффициент вязкости,
Физика задачи с решением — градиент скорости.
Кинематический коэффициент вязкости Физика задачи с решением
Физика задачи с решением
где Физика задачи с решением — плотность жидкости или газа.

Задачи с решением:

Задачи по физике с решениями и ответами по всем темам

Физика (от греч. φύσις – природа), наука, изучающая простейшие и вместе с тем наиболее общие свойства и законы движения объектов материального мира. Понятия физики и её законы лежат в основе всего естествознания.

Физика — один из основных школьных предметов. Физика изучает и описывает процессы происходящие в окружающем нас мире и потому она очень интересна. 

Физика также очень важна после поступления в университет, а навыки, полученные в области физики, широко используются в огромном классе университетских дисциплин во многих областях, от инженерии и науки до архитектуры и информационных технологий. Данный раздел содержит учебные материалы по физике, необходимые для успешной подготовки к получению степени доктора наук и ЕГЭ. Учебные материалы по физике включают: теорию и задачи по всем предметам школьной физики, а также справочники, дополнительные задачи и учебники по физике. Отдельная онлайн-подготовка к ЕГЭ возможна с использованием учебных материалов по физике. Для успешной подготовки к экзаменам и изучения примеров решения по физике необходимо изучить все темы школьной программы по физике, перечисленные здесь, выучить теорию и формулы, а также полностью выполнить задания по физике, перечисленные здесь.

Кинематика

Кинематика. Траектория и координаты. путь и перемещение

Советы: с чего начинать решать задачу и какие законы применить. Читать обязательно!

При решении задач на определение пути S и перемещения Примеры решения задач по физике тела надо помнить, что это за величины и не путать их.

Напоминаем:

  • путь — длина траектории тела
  • путь — скалярная величина
  • перемещение — вектор, соединяющий начальное положение тела с его конечным положением и направленный к конечному положению.

Если траектория движения тела — прямая линия и если направление движения тела одно и то же (нет челночного движения), то путь равен модулю перемещения. Если же траектория тела криволинейная или ломаная, или если тело совершало челночное движение (вперед-назад), то путь больше модуля перемещения. Перемещение тела с течением времени движения может и увеличиваться, и уменьшаться, а путь может только увеличиваться. Если тело вернется в исходное положение, то его перемещение станет равно нулю, а путь — нет, ведь длина траектории с течением времени движения увеличивается, куда бы ни двигалось тело.

При поездке на такси мы оплачиваем пройденный нами путь, а при полете на самолете — перемещение из одного города в другой.

Примеры задач с решением №1:

  1. Пример решения задачи №1. Часовой охраняет объект, огороженный квадратным забором ABCD (рис. 1-1), обходя его по периметру. Чему будут равны его путь и перемещение, если он из точки А перейдет в точку В, затем в точку С, затем в точку D, после чего вернется в точку А? Длина стороны квадрата а.
  2. Пример решения задачи №2. Спортсмен бросил мяч с высоты h = 1,5 м и поймал его на той же высоте. Чему равен путь S и перемещение мяча?
  3. Пример решения задачи №3. Часовая стрелка показывает 12 ч. Какой путь пройдет конец стрелки и какое перемещение он совершит, когда стрелка будет показывать 6 ч вечера; 9 ч вечера? Длина стрелки R.
  4. Пример решения задачи №4. Мяч скатился по трем ступенькам лестницы с высоты Н = 1,2 м. Высота каждой ступеньки равна ее ширине h. Угол наклона лестницы к горизонту а = 45°. Чему равны путь S и перемещение (рис. 1-3)?
  5. Пример решения задачи №5. Тело переместилось из точки А с координатами (-4; 3) в точку В с координатами (4; 3), а затем — в точку С с координатами (4; -3). Определить его путь и перемещение (рис. 1-4).
  6. Пример решения задачи №6. Мяч упал с высоты м и после удара о землю подпрыгнул на высоту . Определить его путь S и модуль перемещения .
  7. Пример решения задачи №7. Определить путь S и перемещение конца минутной стрелки длиной l = 2 см за t = 15 мин (рис. 1-6).
  8. Пример решения задачи №8. Построить графики движений двух тел, описываемых уравнениями см, в одной системе координат и по графикам определить, через сколько времени с момента: t = 0 координата этих тел станет одинаковой и какой она будет. Время t выразить в секундах, а координату х — в сантиметрах.
  9. Пример решения задачи №9. Материальная точка движется согласно уравнениям Проходит ли ее траектория через точки см? Напишите уравнение траектории точки.
  10. Пример решения задачи №10. Материальная точка движется в плоскости XOY, и при этом ее координаты изменяются с течением времени по закону — константа. Какова траектория точки?
  11. Пример решения задачи №11. Автомобиль проехал км, двигаясь на север. Затем ему пришлось свернуть на восток и проехать еще км, после чего он снова повернул на север и достиг конечного пункта, проехав еще км. Найти путь S и перемещение автомобиля. На сколько путь больше модуля перемещения?

Равномерное прямолинейное движение

Советы: с чего начинать решать задачу и какие законы применить. Читать обязательно!

Равномерным прямолинейным движением является движение с постоянной скоростью. Вектор скорости тела Примеры решения задач по физике равен отношению перемещения Примеры решения задач по физике ко времени перемещения t:

Примеры решения задач по физике

Модуль скорости равномерного прямолинейного движения равен отношению пути S ко времени t, за которое этот путь пройден:

Примеры решения задач по физике

Уравнения равномерного движения:

Примеры решения задач по физике

Здесь х — координата тела в момент времени Примеры решения задач по физике — начальная координата тела, Примеры решения задач по физике — проекция вектора скорости тела на ось координат OX, S — путь, пройденный телом за время t, и — модуль вектора скорости (или просто скорость), t — время движения.

Если в условии задачи сказано, что какая-нибудь из этих величин, например, скорость, увеличивается, например, в 2 раза, то обозначьте скорость до увеличения Примеры решения задач по физике, а скорость после увеличения — Примеры решения задач по физике, и в условии задачи запишите:

Примеры решения задач по физике

а если сказано, что скорость уменьшается в 2 раза, то:

Примеры решения задач по физике

Точно так же записывайте условие, если сказано, например, что скорость второго тела Примеры решения задач по физике вдвое больше или вдвое меньше скорости первого Примеры решения задач по физике

Если в условии сказано, что некоторая величина, например, время движения в первом случае на столько-то секунд, т. е. на Примеры решения задач по физике, меньше, чем во втором, то обозначьте время в первом случае Примеры решения задач по физике а во втором случае — Примеры решения задач по физике, и запишите в условии:

Примеры решения задач по физике

а если время в первом случае больше, чем во втором, то

Примеры решения задач по физике

Если в условии задачи сказано, что некоторая величина, например, путь Примеры решения задач по физике пройденный вторым телом, составила 20% пути Примеры решения задач по физике пройденного первым телом, то, учитывая, что 20% — 0,2, запишем:

Примеры решения задач по физике

А если сказано, что путь, пройденный вторым телом, на 20% меньше пути, пройденного первым телом, то запишем так:

Примеры решения задач по физике

График координаты равномерного движения есть прямая линия, пересекающая ось координат на расстоянии Примеры решения задач по физике от начала координат (рис. 2-1). График пути равномерного движения есть прямая линия, проходящая через начало координат под углом к оси времени (рис. 2-2). Скорость на графике пути равномерного движения равна (или пропорциональна в зависимости от цены деления на осях координат) тангенсу угла наклона графика к оси времени:

Примеры решения задач по физике
Примеры решения задач по физике

График скорости равномерного движения есть прямая линия, параллельная оси времени (рис. 2-3). Путь на графике скорости равномерного движения равен (или пропорционален) площади прямоугольника Отпр, построенного на осях координат как на сторонах.

Примеры задач с решением №2:

  1. Пример решения задачи №12. Автомобиль прошел за мин расстояние км. Какое расстояние он пройдет за ч? Движение в обоих случаях равномерное и прямолинейное.
  2. Пример решения задачи №13. Мотоциклист проходит некоторое расстояние в 3 раза быстрее, чем велосипедист. На сколько скорость мотоциклиста больше скорости велосипедиста, если скорость велосипедиста равна 8 м/с?
  3. Пример решения задачи №14. Охотник стреляет в птицу, которая находится в момент выстрела на расстоянии L = 30 м от него. Выстрел производится в направлении, перпендикулярном траектории полета птицы. Скорость птицы, летящей горизонтально, = 15 м/с, скорость дроби = 375 м/с. Какой путь S пролетит птица с момента выстрела до момента, когда в нее попадет дробь?

Равнопеременное прямолинейное движение. прямолинейное движение с переменным ускорением

Советы: с чего начинать решать задачу и какие законы применить. Читать обязательно!

Равнопеременным движением называется движение, при котором за любые равные промежутки времени скорость тела изменяется на одинаковую величину и траектория — прямая линия. При этом ускорение тела постоянно по величине и направлению.

Ускорением Примеры решения задач по физике равнопеременного движения называют отношение изменения скорости тела Примеры решения задач по физике ко времени t, за которое это изменение произошло:

Примеры решения задач по физике

В скалярной записи: Примеры решения задач по физике.

Быстроту движения тела при переменном движении характеризуют средней и мгновенной скоростями.

Средней скоростью движения Примеры решения задач по физике называют отношение пути S ко времени t, за которое путь пройден: Примеры решения задач по физике.

Средней скоростью перемещения называют отношение перемещения Примеры решения задач по физике ко времени, за которое это перемещение произошло: Примеры решения задач по физике.

Мгновенной скоростью Примеры решения задач по физике называют скорость тела в данный момент времени или данной точке траектории. Спидометр автомобиля показывает его мгновенную скорость. Начальная Примеры решения задач по физике и конечная v скорости — это тоже мгновенные скорости.

Если а > 0 — движение равноускоренное, если а < 0 — равнозамедленное.

Важнейшие формулы равноускоренного движения:

Примеры решения задач по физике

Здесь x — конечная координата тела, Примеры решения задач по физике — его начальная координата, Примеры решения задач по физике — проекция начальной скорости на ось координат, ах -проекция ускорения на эту ось.

Прежде чем приступить к решению задач равнопеременного прямолинейного движения, следует хорошенько выучить все эти формулы.

Исключительно для тех, у кого проблемы с алгебраическими преобразованиями, определим величины, стоящие в правой частя некоторых формул.

Формула Примеры решения задач по физике.

Определим время t, конечную и и начальную и0 скорости:

Примеры решения задач по физике

Формула Примеры решения задач по физике

Определим начальную скорость Примеры решения задач по физике:

Примеры решения задач по физике

Определим ускорение Примеры решения задач по физике,

Примеры решения задач по физике

Определим время Примеры решения задач по физике,

Примеры решения задач по физике (знак «минус» перед корнем мы опускаем, так как время не бывает отрицательным).

Формула Примеры решения задач по физике.

Определим начальную Примеры решения задач по физике и конечную и скорости:

Примеры решения задач по физике

Определим ускорение а и путь Примеры решения задач по физике.

Формула Примеры решения задач по физике

Определим начальную Примеры решения задач по физике и конечную о скорости:

Примеры решения задач по физике

Формула Примеры решения задач по физике,

Определим ускорение Примеры решения задач по физике.

Определим номер секунды Примеры решения задач по физике,

Примеры решения задач по физике

Записывая условие задачи, проверьте, не потеряли ли вы какое-нибудь начальное или граничное условие.

Например, если движение равноускоренное, то определите, равна или не равна нулю начальная скорость? Иногда об этом прямо не говорится, но опять же можно догадаться по смыслу условия. Например, если в условии сказано, что поезд отошел от станции и прошло столько-то времени с этого момента или он прошел такой-то путь, то очевидно, что его начальная скорость была равна нулю. Если речь идет о том, что автомобиль тормозит и останавливается, то очевидно, что в конце торможения его скорость станет равна нулю.

Обычно вначале решают довольно простые задачи на равнопеременное движение, которые, как правило, сводятся к правильному определению типа движения. Затем в соответствии с данными в условии величинами записывают одно или два уравнения, описывающих это движение, после чего сразу или по выполнении необходимой подстановки отыскивают нужную величину сначала в общем виде, затем в числовом выражении. Мы позволим себе привести несколько примеров такой подборки формул, которая дает скорейшее нахождение искомой величины при заданных в условии задач буквенных обозначениях известных величин. Решение в общем виде взято в рамку.

Примеры решения задач по физике
Примеры решения задач по физике

Если тело в конце равнозамедленного движения остановилось, то путь S, пройденный им за это время до остановки, можно определить по формуле Примеры решения задач по физике, а не по формуле Примеры решения задач по физике, несмотря на то, что Примеры решения задач по физике здесь, конечно, не равно нулю. Пользоваться упрощенной формулой Примеры решения задач по физикездесь можно потому, что путь, пройденный телом за время t до остановки, равен пути, пройденному телом с прежним по модулю ускорением от остановки за это же время. Если же скорость тела уменьшилась, по оно еще не остановилось, то пользоваться упрощенной формулой Примеры решения задач по физике для определения пути нельзя, можно лишь формулой Примеры решения задач по физике, где ускорение а — отрицательная величина.

Если в задаче требуется определить путь за какую-нибудь п-ю секунду движения, например, за десятую, то для ее решения удобно пользоваться формулой

Примеры решения задач по физике

Здесь n — номер секунды, считая от начала движения. Не следует путать путь за десятую секунду и путь за десять секунд, это, конечно, совершенно разные пути. Путь за десять секунд от начала движения вы определите по формуле

Примеры решения задач по физике

а путь за десятую секунду можно определить по предыдущей формуле, приняв n = 10. Можно также от пути Примеры решения задач по физике за десять секунд Примеры решения задач по физике отнять путь Примеры решения задач по физике за девять секунд Примеры решения задач по физике:

Примеры решения задач по физике

Если в задаче на равнозамедленное движение дано ускорение в виде отрицательной величины, например, Примеры решения задач по физике, то при подстановке этого числа в формулу Примеры решения задач по физике надо написать модуль ускорения, поскольку минус уже учтен, иначе вместо уравнения равнозамедленного движения у вас получится уравнение равноускоренного движения.

Научитесь по данному вам в условии задачи уравнению определять тип движения, т. е. какое это движение: равномерное или равнопеременное, или, может, переменное с изменяющимся ускорением. Запомните, — если вам дана зависимость координаты. или пути от времени, то характер движения зависит от Показателя степени у времени движения t. Поясним на примерах. Запишем рядом уравнения равномерного и равнопеременного движении:

Примеры решения задач по физике

Сравнивая эти уравнения, мы видим, что при равномерном движении координата х и путь S являются функциями времени t в первой степени, Примеры решения задач по физике, а при равнопеременном эти величины являются функциями времени t в квадрате, Примеры решения задач по физике. Таким образом, если вам предложили уравнение пути или координаты и нужно определить, какой тип движения описывает это уравнение, то посмотрите, какая степень у времени t. стоящего в правой части уравнения. И если в правую часть этого уравнения входит время в квадрате, причем квадрат — это максимальный показатель степени у времени t, то это уравнение описывает равнопеременное движение, несмотря на то, что там может находиться еще и член с t в первой степени. А если максимальный показатель степени у времени t в правой части уравнения есть единица, то это уравнение равномерного движения.

Если же координата х или путь S являются функцией Примеры решения задач по физике или или в большей степени, то ускорение такого движения — переменная величина и формулы равнопеременного движения здесь неприменимы.

Рассмотрим примеры: Уравнение движения материальной точки имеет вид Примеры решения задач по физике м. Очевидно, что это движение равномерное, ведь здесь координата х зависит от времени t, стоящего в первой степени. Сравнив это уравнение с уравнением равномерного движения Примеры решения задач по физике, записанным в общем виде, мы можем утверждать, что начальная координата тела, т. е. его координата в момент времениПримеры решения задач по физике м, а скорость движения Примеры решения задач по физике м/с, причем вектор скорости антинаправлен оси координат ОХ.

Другой пример: Движение материальной точки задано уравнением Примеры решения задач по физике м. Здесь в отличие от предыдущего уравнения координата х является функцией Примеры решения задач по физике (правда, здесь тоже присутствует t в первой степени, но тип движения определяет максимальный показатель степени у t). Значит, это уравнение равнопеременного движения. Теперь опять сравним это уравнение с уравнением такого же движения, записанным в общем виде: Примеры решения задач по физике. Из сравнения следует, что здесь тоже начальная координата Примеры решения задач по физике0 м. Кроме того, сравнение показывает, что начальная скорость тела, т. е. его скорость в момент времени Примеры решения задач по физике м/с (здесь знак «минус» показывает, что в этот момент она тоже была анти-направлена оси координат ОХ). Далее из сравнения выражений Примеры решения задач по физике Примеры решения задач по физике можно сделать вывод, что здесь Примеры решения задач по физике, откуда следует, что ускорение тела Примеры решения задач по физике. Движение тела равноускоренное, так как а > 0.

Еще уравнение: Примеры решения задач по физике м. Очевидно, что это уравнение пути равнопеременного (точнее равноускоренного) движения. Из сравнения его с уравнением пути этого движения, записанным в общем виде: Примеры решения задач по физике, следует вывод, что здесь начальная скорость тела равна нулю Примеры решения задач по физике т. е. в момент начала отсчета времени движения тело находилось в состоянии покоя. Кроме того, здесь Примеры решения задач по физике и, значит, ускорение Примеры решения задач по физике.

Таким образом, если в уравнении равнопеременного движения, записанном так, что в его правой части только время t обозначено буквой, а все остальные величины заданы числами, имеется слагаемое, в которое не входит время t, то это слагаемое — начальная координата Примеры решения задач по физике. Если же в таком уравнении имеется член, содержащий время t в первой степени, то величина, которая входит в этот член помимо t, есть начальная скорость Примеры решения задач по физике. И, наконец, величина, входящая в слагаемое, содержащее ts, есть половина ускорения а.

Отметим, что, кроме уравнения координаты или пути, равнопеременное движение описывается также уравнением скорости. В общем виде это уравнение имеет вид Примеры решения задач по физике. Значит, в таком уравнении слагаемое, не содержащее время t, является начальной скоростью движения, а слагаемое, содержащее время t. есть at, и значит, величина, входящая в это слагаемое и стоящая в произведении с t, есть ускорение а. Причем знак «плюс» перед at соответствует равноускоренному движению, а знак «минус» — равнозамедленному.

Приведем пример: Движение тела (материальной точки) задано уравнением Примеры решения задач по физике м/с. Из сравнения этого уравнения с уравнением Примеры решения задач по физике следует вывод, что это уравнение равноускоренного движения с начальной скоростью Примеры решения задач по физике м/с и ускорением Примеры решения задач по физике.

Еще один пример. Движение задано уравнением Примеры решения задач по физике м/с. Это тоже уравнение равноускоренного движения, ведь знак перед членом, содержащим at, положительный, так как Примеры решения задач по физике, и следовательно, здесь Примеры решения задач по физике. Член, не содержащий t, есть начальная скорость Примеры решения задач по физике м/с, и знак «минус» свидетельствует, что она антинаправлена векторам ускорения и конечной скорости v.

Еще пример, Примеры решения задач по физике м/с. Это тоже уравнение равноускоренного движения. Здесь начальная скорость Примеры решения задач по физике и ускорение Примеры решения задач по физике Примеры решения задач по физике.

Таким образом, если вам предложат из системы уравнений:

Примеры решения задач по физике

выбрать, какие здесь уравнения соответствуют равномерному, а какие — равнопеременному движению, то мы надеемся, что вы не ошибетесь.

Проверьте себя:

Примеры решения задач по физике

Встречаются задачи, в условиях которых дано уравнение пути (или координаты) равнопеременного движения, а надо написать уравнение скорости, соответствующее данному уравнению пути. Например, Примеры решения задач по физике м. Как мы уже показали выше, здесь Примеры решения задач по физике — начальная скорость, Примеры решения задач по физике — половина ускорения, следовательно, ускорение Примеры решения задач по физике. Поскольку общий вид уравнения скорости равнопеременного движения (вы ведь уже определили, что данное уравнение соответствует именно этому типу движения, поскольку S есть функция Примеры решения задач по физике, то уравнение скорости, соответствующее приведенному выше уравнению пути, имеет вид Примеры решения задач по физике.

Рассмотрим обратный пример: Дано уравнение скорости v = Примеры решения задач по физике м/с, а требуется записать уравнение пути. Очевидно, что здесь мы имеем тоже равнопеременное движение, поскольку скорость и здесь есть функция времени t в первой степени. Согласно общей формуле Примеры решения задач по физике (подчеркнем еще раз: путь при равнопеременном движении есть функция Примеры решения задач по физике, а скорость — функция 0, значит, в этом уравнении Примеры решения задач по физике. Тогда уравнение пути равнопеременного движения Примеры решения задач по физике здесь будет выглядеть так: Примеры решения задач по физике м.

При равнопеременном движении среднюю скорость можно найти двумя способами: можно разделить весь путь S на время его прохождения t:

Примеры решения задач по физике

а можно определить среднюю скорость как среднее арифметическое начальной Примеры решения задач по физике и конечной и скоростей:

Примеры решения задач по физике

Подчеркнем, что пользоваться последней формулой можно только в случае равнопеременного движения (равноускоренного или равнозамедленного, все равно), в иных случаях можно пользоваться только формулой

Примеры решения задач по физике

Не следует путать среднюю скорость на всем пути со скоростью в средней точке этого пути, это разные величины.

Рассмотрим пример: Уравнение движения тела Примеры решения задач по физике м. Нужно найти скорость о, которую тело приобретет за четыре секунды, среднюю скорость тела Примеры решения задач по физике с которой оно двигалось эти четыре секунды Примеры решения задач по физике, и скорость тела Примеры решения задач по физике в средней точке пути, пройденного за эти 4 с.

Из уравнения этого равноускоренного движения (ведь здесь S пропорционально Примеры решения задач по физике и ускорение положительно)

Примеры решения задач по физике

следует, что тело двигалось с начальной скоростью Примеры решения задач по физике м/с и с ускорением Примеры решения задач по физике. Тогда уравнение скорости его движения: Примеры решения задач по физике. Подставив в это уравнение t = 4 с, мы найдем скорость тела в конце четвертой секунды от начала отсчета времени t:

Примеры решения задач по физике

Теперь среднюю скорость Примеры решения задач по физике можно найти как полусумму начальной Примеры решения задач по физике и конечной Примеры решения задач по физике м/с скоростей:

Примеры решения задач по физике

Можно, конечно, найти ее и иначе, определив вначале путь S за эти четыре секунды:

Примеры решения задач по физике

а затем разделив этот путь на время t = 4 с. Ответ, естественно, будет тот же:

Примеры решения задач по физике

Теперь определим скорость тела в средней точке пути Примеры решения задач по физике. Подчеркнем, что скорость в средней точке пути — это не средняя скорость, а некоторая мгновенная скорость тела на середине его пути. Ее можно найти, зная начальную скорость Примеры решения задач по физике м/с, ускорение тела Примеры решения задач по физике, которое постоянно на всем пути, и половину пути Примеры решения задач по физике м по формуле Примеры решения задач по физике.

Примеры решения задач по физике

Подчеркнем, что первую половину пути тело проходит за большее время, чем вторую, ведь его скорость все время нарастает, поэтому время прохождения цервой и второй половик пути разное.

Отметим еще раз, что скорость v в конце пути S — это скорость в конце четвертой секунды движения. А если вам нужно будет найти скорость в начале четвертой секунды, то это значит, что прошло всего 3 с движения и в формулу v = 4 + 4t м/с надо подставить время t = 3 с.

Рассмотрим теперь пример на равнозамедленное движение. Уравнение скорости тела: v = 8 — t м/с. Нужно определить, через какое время тело остановится и какой путь оно пройдет до остановки.

Итак, имеем

Примеры решения задач по физике

Из приведенных уравнений следует, что начальная скорость тела Примеры решения задач по физике м/с, а его ускорение Примеры решения задач по физике. Слова «тело остановится» означают, что конечная скорость тела v = 0 (запомните, если сказано, что тело остановилось, значит, вы должны записать в условии, что конечная скорость тела v = 0). Если это так, то правую часть данного нам уравнения v = 8 — t м/с мы должны приравнять к нулю и из полученного равенства найти время t движения тела до остановки:

Примеры решения задач по физике

Самый простой способ определения пути, пройденного телом до остановки, через среднюю скорость:

Примеры решения задач по физике

При этом Примеры решения задач по физике.

Можно также определить путь S по формуле

Примеры решения задач по физике

Отметим, что хоть мы и называем величины Примеры решения задач по физике скоростью и ускорением, по существу это проекции векторов Примеры решения задач по физике, и Примеры решения задач по физике на ось координат, обычно сонаправленную с перемещением тела, т. е. это величины алгебраические и могут быть как положительными, так и отрицательными.

Среди задач на переменное движение отдельную группу составляют задачи на сочетание нескольких видов движения на всем пути. Если при этом требуется определить среднюю скорость на всем пути, то ее можно найти по формуле

Примеры решения задач по физике

При этом следует учесть, что конечная скорость на одном участке пути является начальной скоростью на соседнем участке. Определяя среднюю скорость, выразите все пути Примеры решения задач по физике и т. д. или времена Примеры решения задач по физике и т. д. через величины, данные в условии задачи, с учетом вида движения на каждом отрезке, а затем подставьте полученные выражения в формулу Примеры решения задач по физике Подробное решение таких задач дано ниже. Ни в коем случае не применяйте формулу Примеры решения задач по физике для отрезков с переменным ускорением.

На рис. 3-1 приведены графики ускорения, скорости, пути и координаты равнопеременного движения.

Примеры решения задач по физике

При движении с переменным ускорением скорость равна первой производной пути по времени: Примеры решения задач по физике.

В этом случае ускорение равно первой производной скорости по времени: Примеры решения задач по физике.

Примеры задач с решением №3:

  1. Пример решения задачи №15. Автомобиль через с от начала движения приобретает скорость км/ч. Через сколько времени от начала движения его скорость станет равна м/с? Ускорение постоянно.
  2. Пример решения задачи №16. Длина разбега при взлете самолета равна км, а скорость отрыва от земли = 240 км/ч. Длина пробега при посадке этого самолета — 800 м, а посадочная скорость = 210 км/ч. Во сколько раз ускорение при взлете больше ускорения при посадке (по модулю)? На сколько различаются время разбега и время посадки ?
  3. Пример решения задачи №17. Автомобиль прошел путь S = 10 км за t = 6 мин с ускорением . Чему равны начальная и конечная и скорости автомобиля?

Относительность движения. Сложение скоростей

Советы: с чего начинать решать задачу и какие законы применить. Читать обязательно!

В задачах на относительность движения и сложение скоростей движение тел бывает, как правило, равномерным и прямолинейным, т. е. описывается достаточно простыми уравнениями. Тем не менее эти задачи смело можно отнести к труднейшим задачам механики. При решении таких задач пользуются правилом сложения классических скоростей, т. е. скоростей, значительно меньших скорости света в вакууме: Примеры решения задач по физике м/с. Правило сложения классических скоростей: скорость тела относительно неподвижной системы отсчета (абсолютная скорость) равна сумме скорости относительно подвижной системы отсчета (собственной скорости) и скорости самой подвижной системы относительно неподвижной (переносной скорости). Рассмотрим несколько примеров, которые покажут вам, как можно приступить к решению подобных задач, с чего начать.

Начнем с задач на сложение скоростей. Любое движение тела может быть представлено как суперпозиция (наложение) двух разных независимых движений, в которых оно одновременно участвует. Если в задаче идет речь о движении тела в тоже движущейся среде, которая это тело увлекает за собой (лодка в реке, пассажир в движущемся поевде, человек на лестнице эскалатора и т. п.), то можно связать неподвижную систему отсчета с наблюдателем, который смотрит на все это со стороны, находясь, например, на берегу или на платформе. Движущуюся систему отсчета — реку, вагон, эскалатор, и т. п. — можно связать с другим неподвижным относительно этой среды наблюдателем, а движение самого тела -лодки, пассажира, человека, бегущего по эскалатору, и т. п. — рассматривать как суперпозицию двух движений: собственного и переносного, которые происходят одновременно, т. е. сколько времени оно само движется, столько времени его переносит среда.

Рассмотрим пример на правило сложения скоростей. Пусть скорость течения реки Примеры решения задач по физике, а скорость лодки, переплывающей эту реку, относительно воды равна Примеры решения задач по физикеи направлена перпендикулярно берегу (рис. 4-1).

Лодка одновременно участвует в двух независимых движениях: она за некоторое время t переплывает реку

Примеры решения задач по физике

шириной Н со скоростью Примеры решения задач по физике относительно воды и за это же время ее сносит вниз по течению на расстояние l со скоростью течения Примеры решения задач по физике . В результате лодка проплывает путь S со скоростью Примеры решения задач по физике относительно берега, равной по модулю: Примеры решения задач по физике за это же самое время t. Поэтому мы можем записать три уравнения движения, которые могут пригодиться в процессе решения подобных задач:

Примеры решения задач по физике

Зададим себе вопрос: под каким углом а к берегу должен грести гребец в лодке, чтобы оказаться на противоположном берегу, пройдя во время переправы минимальный путь? За какое время t этот путь будет пройден? С какой скоростью и лодка пройдет этот путь?

Чтобы ответить на все эти вопросы, рассмотрим

Примеры решения задач по физике

внимательно рис. 4-2. Очевидно, что минимальный путь, который может проплыть лодка, пересекая реку, равен ширине реки Н. Чтобы проплыть этот путь, гребец должен направить лодку под таким углом а к берегу, при котором вектор абсолютной скорости лодки Примеры решения задач по физике будет направлен перпендикулярно берегу. Тогда из прямоугольного треугольника на рис. 4-2 найдем

Примеры решения задач по физике

Скорость v определим из этого же треугольника по теореме Пифагора: Примеры решения задач по физике

И наконец, время t, за которое лодка пересечет реку шириной Н, двигаясь со скоростью у, будет Примеры решения задач по физике.

Иногда в подобных задачах спрашивается, как надо направить лодку, чтобы переплыть реку за минимальное время? Чтобы ответить на этот вопрос, нужно получить такую формулу, в которой время будет определено через постоянные величины Примеры решения задач по физике и переменный угол Примеры решения задач по физике между вектором Примеры решения задач по физике и берегом, а затем подумать, при каком угле а время будет минимальным.

Давайте попытаемся ответить на этот вопрос. Пусть величины Примеры решения задач по физике нам известны. Рассмотрим рис. 4-3.

Пусть лодка пересекает реку под разными углами Примеры решения задач по физике. Мы видим, что, чем меньше угол Примеры решения задач по физике, тем больше скорость лодки Примеры решения задач по физике.

Примеры решения задач по физике

Но и тем больший путь придется ей проплыть. Теперь внимание! Лодка проплывет реку, пройдя путь S со скоростью и за такое же время t, за какое она пересечет ширину реки Я, двигаясь со скоростью Примеры решения задач по физике. И за это же время t ее снесет вниз по течению на расстояние I со скоростью Примеры решения задач по физике. Таким образом, согласно принципу независимости движений справедливы следующие равенства:

Примеры решения задач по физике

где по правилу сложения скоростей скорость лодки относительно берега:

Примеры решения задач по физике

Чтобы ответить на вопрос о минимальном времени, обратимся к формуле Примеры решения задач по физике.

Так как здесь H и Примеры решения задач по физике постоянные, то время будет минимальным, когда синус угла а будет максимальным. Вы должны знать, что величина синуса может изменяться от нуля до единицы. Значит, максимальной величиной синуса является 1. Такому значению синуса соответствует угол Примеры решения задач по физике. Значит, время будет минимальным, когда угол а между вектором Примеры решения задач по физике и берегом будет равен

Примеры решения задач по физике

Таким образом, чтобы переплыть реку за минимальное время, нужно грести перпендикулярно берегу (запомните, может пригодиться) (рис. 4-4). Вас при этом, правда, снесет вниз по течению, но зато потратите минимум времени. А вот если вы не хотите, чтобы вас снесло, надо грести под тупым углом к течению реки так, чтобы вектор результирующей скорости Примеры решения задач по физике был перпендикулярен берегу. Времени и сил при этом вы потратите больше, но зато высадитесь напротив того места, откуда отплыли (рис. 4-2).

Примеры решения задач по физике

Задачи на относительность движения тел связаны, как правило, с определением их относительной скорости или относительного положения. Рассмотрим некоторые примеры.

Пусть два поезда движутся по параллельным путям в одном направлении с одинаковыми скоростями, например Примеры решения задач по физике км/ч относительно некоторого неподвижного наблюдателя, стоящего на платформе. Зададимся вопросом: какова их скорость относительно друг друга, т. е. с какой скоростью один поезд опережает второй? Очевидно, что эта относительная скорость равна нулю, ведь их скорости одинаковы. Если вы при этом будете сидеть у окошка одного из поездов, то вам будет казаться, что второй поезд не движется относительно вас. Это так и есть, ведь относительно вас он не изменяет своего положения.

Теперь пусть ваш поезд увеличил свою скорость до Примеры решения задач по физике км/ч, а скорость второго поезда осталась неизменной. Какова теперь относительная скорость поездов, т. е. с какой скоростью о ваш поезд будет обгонять соседний поезд? Очевидно, что относительная скорость поездов теперь равна разности их скоростей, так как если второй поезд принять за неподвижный, то ваш поезд будет удаляться от него со скоростью

Примеры решения задач по физике

Так будет, если поезда движутся сонаправлено. А если они движутся навстречу друг другу, то их относительная скорость станет равна сумме скоростей Примеры решения задач по физике. Действительно, если теперь второй поезд принять за неподвижный, то ваш поезд будет приближаться ко второму со своей собственной скоростью Примеры решения задач по физике, да еще и со скоростью второго поезда Примеры решения задач по физике, направленной ему навстречу. Поэтому теперь их относительная скорость

Примеры решения задач по физике

Приведенные примеры относительно просты, поскольку здесь тела движутся параллельным курсом. Сложнее определять относительную скорость, когда скорости тел направлены под углом друг к другу. Пусть, например, два тела движутся со взаимно перпендикулярными скоростями Примеры решения задач по физике (рис. 4-5).

Для определения относительной скорости этих тел свяжем тело 2 с подвижной системой отсчета Примеры решения задач по физике т. е. будем считать, что скорость тела Примеры решения задач по физике — это и есть скорость подвижной системы, или переносная скорость. Тогда скорость Примеры решения задач по физике тела 1 — это есть скорость относительно неподвижной системы отсчета XOY (рис. 4-5, а), т. е.

Примеры решения задач по физике

абсолютная скорость, а искомая относительная скорость Примеры решения задач по физике — это его скорость относительно подвижной системы отсчета. Согласно правилу сложения скоростей Примеры решения задач по физике, откуда Примеры решения задач по физике.

Таким образом, относительная скорость этих двух тел равна векторной разности их скоростей, (рис. 4-5), а ее модуль можно определить по теореме Пифагора, поскольку в прямоугольном треугольнике, изображенном на рис. 4-5, б), вектор Примеры решения задач по физике является гипотенузой, а векторы Примеры решения задач по физике — катетами: Примеры решения задач по физике

Примеры решения задач по физике

Рассмотрим более сложный случай, когда тело 1 движется, например, горизонтально со скоростью Примеры решения задач по физике, а тело 2 -под углом Примеры решения задач по физике к горизонту со скоростью Примеры решения задач по физике (рис. 4-6 а).

Опять свяжем с телом 2 подвижную систему отсчета Примеры решения задач по физике и будем считать скорость этого тела, или, что то же самое, скорость подвижной системы Примеры решения задач по физике переносной скоростью, скорость тела 1 Примеры решения задач по физике — скоростью относительно неподвижной системы XOY, т. е. абсолютной, а скорость Примеры решения задач по физике — собственной скоростью тела 1 относительно подвижной системы или связанного с ней тела 2. Тогда, согласно правилу сложения скоростей Примеры решения задач по физике, откуда Примеры решения задач по физике.

Для определения модуля относительной скорости Примеры решения задач по физике воспользуемся теоремой косинусов. Поскольку в тупоугольном треугольнике, образованном векторами Примеры решения задач по физике (рис. 4-6, б), угол, лежащий против вектора Примеры решения задач по физике, равен 180° — а, то по теореме косинусов

Примеры решения задач по физике

ведь Примеры решения задач по физике.

Примеры задач с решением №4:

  1. Пример решения задачи №18. Катер пересекает реку, двигаясь перпендикулярно берегу со скоростью = 4 м/с относительно воды. Ширина реки Н — 1000 м, а скорость течения реки — 1 м/с. На сколько метров Z-снесет катер по течению, когда он переправится на противоположный берег? Какой путь 5 пройдет катер?
  2. Пример решения задачи №19. Лодка переплывает реку, выдерживая направление перпендикулярно берегу. Скорость лодки относительно берега v = 1 м/с, скорость течения = 0,8 м/с. Чему равен вектор скорости лодки относительно воды? За какое минимальное время лодка переплывет эту реку с прежней по модулю скоростью относительно воды, если ширина реки Н = 100 м? Какова при этом будет скорость лодки относительно берега ? За какое время t лодка переплывет реку, пройдя минимальный путь?
  3. Пример решения задачи №20. Пловцу предстоит переплыть реку шириной Н из точки М в точку N (рис. 4-9). Расстояние от точки О, расположенной напротив точки М; до точки N равно Z, скорость течения . С какой минимальной скоростью относительно воды пловец может плыть, чтобы попасть в точку N на противоположном берегу?

Свободное падение

Советы: с чего начинать решать задачу и какие законы применить. Читать обязательно!

Свободным падением называют падение тела в вакууме под действием притяжения к планете. Ускорение свободного падения в средних широтах Земли Примеры решения задач по физике.

Если в условии задачи сказано, что тело падает, надо решить, как оно падает: свободно или нет. Об этом иногда можно догадаться, исходя из самого условия. Падение пловца, прыгнувшего с вышки, мяча, камня, снаряда смело можно считать свободным, если о сопротивлении среды ничего не сказано в условии, а вот падение парашютиста (если, конечно, парашют раскрыт) считать свободным уже никак нельзя. Если говорится: «Тело падает с высоты…» и ничего не сказано о его начальной скорости, то смело можно считать ее равной нулю. А если сказано, что в процессе падения тело оказалось на такой-то высоте, то на этой высоте его скорость не равна нулю и в процессе падения все время нарастает. Если говорится, что тело упало на землю, то в момент падения его скорость ни в коем случае не равна нулю, а наоборот, она максимальна. Если говорится о теле, брошенном вверх, то его скорость в момент броска — это его начальная скорость и является наибольшей, а по мере взлета тела его скорость будет уменьшаться, поскольку ускорение свободного падения при этом анти-направлено перемещению и тело движется равнозамедленно. Если в условии сказано, что брошенное вверх тело оказалось на такой-то высоте, то следует хорошенько подумать, является ли эта высота максимальной или это просто какая-то промежуточная высота и тело полетело еще выше. Это очень важно, потому что если это высота наибольшего подъема, то конечная скорость тела на этой высоте равна нулю и решение задачи существенно упрощается. А если это промежуточная высота, то там скорость не равна нулю и ее необходимо учитывать.

Падающее тело может участвовать в разных типах движения на разных высотах падения. Например, парашютист в затяжном прыжке падает свободно, а когда он раскрывает парашют, то его ускорение резко уменьшается и может стать равным нулю. Тогда он будет падать равномерно. При этом конечная скорость на одном участке падения является начальной на другом. Решая такую задачу, следует для каждого участка падения записать свои уравнения и ни в коем случае не подставлять всю высоту в какое-нибудь из этих уравнений, а следует ее представить как сумму высот, соответствующих каждому типу движения.

Если два тела, например, падающее и брошенное вверх, встретились на какой-то высоте, значит, у них при этом координата у стала одинаковой. Такие задачи удобно решать, используя уравнение координат

Примеры решения задач по физике

Перед начальной скоростью Примеры решения задач по физике тоже может стоять «минус», даже когда перед членом Примеры решения задач по физике «плюс». Так бывает, когда начальная скорость тела антинаправлена оси ОУ или будущему перемещению тела. Например, если какое-то тело взлетало и на некоторой высоте в процессе подъема от него отвалилась часть или из него выпал какой-то предмет, то в этот момент начальная скорость падающего предмета равна скорости взлетающего тела и антинаправлена перемещению предмета, и если перед членом Примеры решения задач по физике поставить «плюс», то перед Примеры решения задач по физике следует поставить «минус». Тогда уравнение пути для такого случая примет вид

Примеры решения задач по физике

а уравнение координаты Примеры решения задач по физике и при этом ось ОУ направлена вниз. Знак перед начальной координатой Примеры решения задач по физике определяется ее положением на оси ОУ относительно начала отсчета.

Уравнения Примеры решения задач по физике применимы не только к равнозамедленному движению тела вверх, но и к последующему его падению с максимальной высоты после остановки в высшей точке, поскольку величина ускорения тела остается прежней. Но нужно помнить, что при этом под h следует понимать модуль перемещения тела, т. е. расстояние от его координаты в данный момент до его начальной координаты в момент броска.

Рассмотрим пример: Тело брошено свободно с начальной скоростью Примеры решения задач по физике м/с вертикально вверх. Нужно найти его путь 8 и перемещение Примеры решения задач по физике за время t = 8 с. Несложно подсчитать, что тело достигнет высшей точки (v = 0) через время

Примеры решения задач по физике

взлетев при этом на высоту

Примеры решения задач по физике

после чего оно начнет падать. Через t = 8 с с момента броска оно окажется на высоте

Примеры решения задач по физике

Эта высота и есть модуль перемещения тела Примеры решения задач по физике. Весь путь S, пройденный телом, очевидно, равен сумме высоты Н и отрезка Н — h, который тело прошло с момента начала падения до момента, когда оно оказалось на высоте h:

Примеры решения задач по физике

Если два тела падают друг за другом через промежуток времени At одно после другого, то следует учитывать, что в момент начала падения второго тела их разделяет отрезок Примеры решения задач по физике

(в случае, когда начальная скорость обоих тел равна нулю). Через время t от начала падения второго тела первое пройдет путь Примеры решения задач по физике, а второе Примеры решения задач по физике, поэтому теперь их будет разделять расстояние Примеры решения задач по физике:

Примеры решения задач по физике

Если же их начальные скорости Примеры решения задач по физике не равны нулю, то

Примеры решения задач по физике

Приведем еще раз формулы, которые вы, конечно, должны держать в памяти, приступая к решению задач на свободное падение тел. Расстояние, пройденное падающим телом, можно обозначить h или Ну или S и т.п.

Примеры решения задач по физике

Для определения пути Примеры решения задач по физике пройденного за n-ю секунду падения, можно во всех случаях пользоваться формулой Примеры решения задач по физике.

Примеры задач с решением №5:

  1. Пример решения задачи №21. За какое время t тело, начавшее свободное падение из состояния покоя, пройдет путь S = 19,6 м (рис. 5-1)? Какова будет его скорость и в конце пути и на середине пути? Какова будет средняя скорость этого тела на пути S?
  2. Пример решения задачи №22. На некоторой планете ускорение свободного падения на 25% меньше, чем на Земле. Во сколько раз высота свободного падения тела за одно и то же время на этой планете меньше, чем на Земле?
  3. Пример решения задачи №23. Со скалы высотой Н = 200 м брошены вниз два тела: сначала одно, а затем второе. Оба тела упали на землю одновременно. На сколько времени второе тело брошено позже первого, если начальная скорость первого тела 1 равна нулю, а второго — м/с? Падение считать свободным.

Криволинейное движение тел с ускорением свободного падения

Советы: с чего начинать решать задачу и какие законы применить. Читать обязательно!

А. Движение тела, брошенного горизонтально

Пусть тело, находившееся на высоте h, брошено горизонтально со скоростью Примеры решения задач по физике (рис. 6-1). Сопротивлением воздуха можно пренебречь. При этом на тело будет действовать притяжение планеты, в результате чего оно станет свободно падать в направлении оси OY без начальной скорости Примеры решения задач по физике. Но поскольку ему в точке О была сообщена горизонтальная скорость Примеры решения задач по физике и нет причин,

Примеры решения задач по физике

которые заставили бы тело изменить эту скорость (никакие другие тела на брошенное тело в горизонтальном направлении не действуют, сопротивление среды, отсутствует), то тело будет одновременно двигаться и в горизонтальном направлении вдоль оси ОХ с постоянной по величине и направлению скоростью Примеры решения задач по физике. В результате движение тела будет представлять собой суперпозицию двух движений, происходящих одновременно: равномерного и прямолинейного движения в горизонтальном направлении со скоростью Примеры решения задач по физике и свободного падения, т. е. равноускоренного движения вниз без начальной скорости с высоты h с ускорением свободного падения Примеры решения задач по физике.

Расстояние, которое тело пролетит по горизонтали, пока не упадет на землю, называют дальностью полета S. Время падения тела с высоты Л равно времени прохождения им расстояния S. Уравнение движения тела по горизонтали будет иметь вид

Примеры решения задач по физике, а по вертикали Примеры решения задач по физике. При Примеры решения задач по физике получим

Примеры решения задач по физике

Если теперь из (6-1) выразить время t и подставить его в уравнение (6-2), то мы получим уравнение, выражающее связь высоты падения тела с дальностью его полета:

Примеры решения задач по физике, и тогда Примеры решения задач по физике или Примеры решения задач по физике, что аналогично уравнению параболы Примеры решения задач по физике, так как Примеры решения задач по физике — постоянные величины.

Мы видим, что координата у пропорциональна квадрату координаты х. Такая зависимость на графике изображается плоской кривой линией — параболой. Следовательно, тело, брошенное свободно с некоторой высоты в горизонтальном направлении, движется по параболе, ветвь которой направлена вниз, а вершина располагается в точке бросания.

Время падения t с высоты Л, равное времепи полета на расстояние S, можно найти по формуле (6-3) или из равенства (6-2):

Примеры решения задач по физике

В процессе движения тела по параболе его горизонтальная скорость Примеры решения задач по физике будет оставаться постоянной, а вертикальная скорость Примеры решения задач по физике, которая в точке бросания О была равна нулю Примеры решения задач по физике, будет нарастать. Если сложить векторно скорости Примеры решения задач по физике, то мы найдем результирующую скорость тела в каждой точке траектории, по которой оно движется. Вектор этой скорости Примеры решения задач по физике направлен по касательной к параболе в каждой ее точке и по модулю определяется теоремой Пифагора: Примеры решения задач по физике.

Тангенс угла Примеры решения задач по физике между вектором Примеры решения задач по физике и горизонтом можно определить отношением Примеры решения задач по физике.

Б. Движение пикирующего тела

Если тело пикирует к земле с высоты h под некоторым углом Примеры решения задач по физике (рис. 6-2) со скоростью Примеры решения задач по физике , то теперь у его начальной скорости есть вертикальная составляющая Примеры решения задач по физике, которая является начальной скоростью его свободного падения с высоты h вдоль оси OY. Кроме того, у его начальной скорости есть горизонтальная составляющая Примеры решения задач по физике, с которой оно будет двигаться равномерно вдоль оси ОХ (см. рис. 6-2).

Теперь уравнения движения тела вдоль осей ОХ и OY будут иметь вид Примеры решения задач по физике

При Примеры решения задач по физике или

Примеры решения задач по физике

При решении соответствующих задач, кроме приведенных уравнений, вам могут пригодиться формулы Примеры решения задач по физике.

Примеры решения задач по физике и др.

Угол Примеры решения задач по физике между вектором результирующей скорости Примеры решения задач по физике и горизонтом будет непрерывно увеличиваться. Тангенс этого угла можно определить отношением скоростей Примеры решения задач по физике.

На рис. 6-2 приведены некоторые формулы, используемые при решении соответствующих задач.

Примеры решения задач по физике

Траектория движения тела и в этом случае является параболой, в чем нетрудно убедиться, выразив время из уравнения Примеры решения задач по физике и подставив его в уравнение Примеры решения задач по физике:

Примеры решения задач по физике

Мы видим, что и здесь координата у является функцией координаты хг, значит, это парабола.

При одинаковой высоте падения дальность полета будет меньше, а скорость падения — больше, чем при горизонтальном бросании с той же скоростью. Вот почему для более точного падения груза на выбранное место при сбрасывании его с самолета самолет пикирует. При этом дальность полета груза меньше и прицельность сбрасывания точнее.

В. Движение тела, брошенного под углом а к горизонту

Пусть тело брошено под углом Примеры решения задач по физике к горизонту со скоростью Примеры решения задач по физике (рис. 6-3). Сопротивлением воздуха можно пренебречь.

При этом опять на тело будет действовать только притяжение планеты вертикально вниз, под действием которого оно будет одновременно участвовать в двух движениях: равномерном и прямолинейном по горизонтали вдоль оси ОХ и сначала — в равнозамедленном движении вверх с убывающей по модулю скоростью до высшей точки подъема, гдеПримеры решения задач по физике, а затем — в свободном падении вниз без начальной скорости вдоль оси OY.

Скорость движения тела вдоль оси ОХ будет постоянна и равна Примеры решения задач по физике.

Координату тела х на оси ОХ можно определить по формуле Примеры решения задач по физике.

Дальность полета Примеры решения задач по физике — все время полета.

Примеры решения задач по физике

Скорость движения тела вдоль оси OY Примеры решения задач по физике будет вначале убывать, пока оно не достигнет высшей точки подъема, где вертикальная скорость станет равна нулю, а затем при свободном падении с максимальной высоты Примеры решения задач по физике она будет возрастать. Определить Примеры решения задач по физике можно по формуле Примеры решения задач по физике.

Угол Примеры решения задач по физике, под которым тело упадет на землю, равен углу, под которым оно было брошено (эти углы образованы векторами скорости тела и линией горизонта). Скорость тела Примеры решения задач по физике в момент бросания по модулю равна скорости в момент падения и время взлета t равно времени падения, а все время полета Примеры решения задач по физике равно удвоенному времени взлета или удвоенному времени падения.

Уравнение движения вдоль оси OY (в случае Примеры решения задач по физике)

Примеры решения задач по физике

Если сюда подставить Примеры решения задач по физике, то получим уравнение траектории тела

Примеры решения задач по физике

Это уравнение параболы, вершина которой находится в высшей точке подъема, а ветви направлены вниз. Следовательно, тело, брошенное под углом к горизонту, движется по параболе.

В высшей точке подъема Примеры решения задач по физике, поэтому

Примеры решения задач по физике, а максимальная высота взлета

Примеры решения задач по физике

Кроме того,

Примеры решения задач по физике

Все эти формулы используют при решении соответствующих задач.

Определим угол атаки, при котором дальность полета тела будет наибольшей. Углом атаки называют угол а между вектором скорости летящего тела и линией горизонта. Обратимся к уравнению Примеры решения задач по физике. В этом уравнении начальная скорость тела Примеры решения задач по физике и ускорение свободного падения g, с которым все время движется тело, остаются постоянными на протяжении всего полета. Значит, дальность полета тела S будет максимальной, когда станет максимальным Примеры решения задач по физике. Но максимальное значение синуса любого угла равно единице. Если Примеры решения задач по физике, следовательно, Примеры решения задач по физике. Таким образом, при угле атаки в 45° дальность полета тела, брошенного свободно под углом к горизонту, будет наибольшей.

Если тело, брошенное под углом к горизонту, испытывает сопротивление внешней среды, например, воздуха, то его движение вдоль оси ОХ уже не будет равномерным, а будет происходить с замедлением, поэтому к такому случаю уравнение равномерного движения применять нельзя.

Примеры решения задач по физике

Движение вверх вдоль оси OY при этом будет происходить не с ускорением свободного падения, а с иным ускорением, обусловленным, кроме притяжения планеты, еще и сопротивлением среды, из-за чего тело будет быстрее тормозиться и, как следствие, поднимется на меньшую высоту. Траектория движения тела в этом случае уже не будет представлять собой параболу, а будет выглядеть примерно так, как показано на рис. 6-4. При составлении уравнений кинематики применительно к такому движению необходимо учитывать влияние сопротивления среды на его кинематические параметры.

При решении задач на движение тел, брошенных горизонтально или под углом к горизонту, под действием только тяготения планеты, следует помнить, что ускорение тела в любой точке траектории направлено вертикально вниз и равно ускорению свободного падения. Решая такие задачи, обязательно выполните чертеж. Изобразите систему координат XOY так, чтобы векторы начальной скорости Примеры решения задач по физике и ускорения свободного падения Примеры решения задач по физике лежали в плоскости XOY, направив ось ОХ горизонтально, а ось OY — вертикально вниз, если речь идет о теле, брошенном на некоторой высоте горизонтально, или падающем на землю под углом к горизонту. Если же тело брошено с земли под углом к горизонту или брошено на некоторой высоте так, что вертикальная составляющая его начальной скорости направлена вертикально вверх, то ось OY тоже удобно направлять вверх. При этом начало координат совмещают с точкой бросания или его располагают на поверхности земли под точкой бросания, если тело бросают с некоторой высоты. Не забудьте записать начальные условия в соответствии с выбранной системой координат.

Если тело брошено с земли под углом к горизонту, то на любой высоте h, кроме максимальной, оно окажется дважды: когда будет взлетать и когда будет падать после достижения высшей точки подъема (рис. 6-5). Этим двум разным положениям 1 и 2 будут соответствовать и разные времена Примеры решения задач по физике, которые можно определить, решив уравнение Примеры решения задач по физике,

Примеры решения задач по физике
Примеры решения задач по физике

Время Примеры решения задач по физике соответствует времени взлета тела на высоту h, а время Примеры решения задач по физике, соответствует моменту, когда тело вновь оказалось на высоте h, уже начав спускаться после прохождения точки максимального подъема с ускорением g. Этим двум моментам времени будут соответствовать и две дальности полета Примеры решения задач по физике, определяемые уравнениями Примеры решения задач по физике.

Если сказано, что тело брошено под углом а к горизонту с некоторой высоты, то здесь возможны два варианта бросания, изображенные на рис. 6-6, а) и б). Соответственно и решения таких задач будут разными. Если не сказано, как оно брошено, рассматривайте оба случая.

Примеры решения задач по физике

Примеры задач с решением №6:

  1. Пример решения задачи №24. При выстреле из двустороннего пружинного пистолета (рис. 6-7) в горизонтальном направлении один снаряд вылетел со скоростью = 2 м/с. С какой скоростью вылетел второй снаряд, если они упали на землю через t = 0,2 с на расстоянии S = 1 м друг от друга? Сопротивлением воздуха пренебречь. Длина ствола пистолета l = 10 см.
  2. Пример решения задачи №25. Во сколько раз надо изменить скорость тела, брошенного горизонтально, чтобы при вдвое большей высоте, с которой оно брошено, получить прежнюю дальность полета? Сопротивлением воздуха пренебречь.
  3. Пример решения задачи №26. Если стрелу пустить вертикально вверх с некоторой скоростью, то она поднимется на высоту Н. Чему будет равна дальность полета стрелы S, если ее пустить горизонтально с высоты Лис прежней по величине скоростью? Сопротивлением воздуха пренебречь.

Равномерное движение по окружности

Советы: с чего начинать решать задачу и какие законы применить. Читать обязательно!

Тело движется равномерно по окружности, когда равнодействующая всех приложенных к нему сил постоянна по модулю и направлена в каждой точке его траектории по радиусу к центру окружности.

Равномерное движение тела по окружности характеризуют следующими параметрами: угловой скоростью Примеры решения задач по физике, периодом Т, частотой вращения v, линейной скоростью и и центростремительным ускорением Примеры решения задач по физике.

Линейная скорость v — это скорость, с которой материальная точка движется по окружности. Она равна отношению длины дуги S ко времени t, за которое пройдена эта дуга:

Примеры решения задач по физике

Угловая скорость равна отношению угла поворота радиуса R, соединяющего материальную точку с центром окружности, ко времени t поворота:

Примеры решения задач по физике

Период Т — это время одного оборота. Он равен отношению всего времени вращения t к числу полных оборотов N:

Примеры решения задач по физике

Частота V — это число оборотов в единицу времени. Она равна отношению числа оборотов N ко времени t:

Примеры решения задач по физике

Связь между всеми параметрами этого движения:

Примеры решения задач по физике

При равномерном движении тела по окружности точки, лежащие на радиусе, движутся с одинаковой угловой скоростью, поскольку радиус за одинаковое время поворачивается на одинаковый угол. А вот линейная скорость и разных точек радиуса различна в зависимости от того, насколько близко или далеко от центра О они располагаются, Например, если две точки 1 и 2 располагаются на радиусе R так, как показано на рис. 7-1, то формулы, устанавливающие связь линейных скоростей этих точек Примеры решения задач по физике с их угловой скоростью Примеры решения задач по физике, будут выглядеть так:

Примеры решения задач по физике
Примеры решения задач по физике

Поскольку расстояние r от первой точки до центра вращения О меньше, чем от второй, а их угловые скорости Примеры решения задач по физике одинаковы, то линейная скорость первой точки меньше, чем второй.

Поделив эти уравнения друг на друга, можно исключить угловую скорость и установить соотношение линейных скоростей этих точек в зависимости от их радиусов вращения:

Примеры решения задач по физике

Из этого соотношения можно определить одну из искомых в задаче величин, если остальные известны.

Решая задачи на вращательное движение стрелок часов, помните, что период вращения секундной стрелки Примеры решения задач по физике, период вращения минутной стрелки Примеры решения задач по физике, период вращения часовой стрелки Примеры решения задач по физике.

Как и прямолинейное движение, движение тела по окружности является относительным, т. е. оно различно в разных системах отсчета. Поэтому траектория тела в одной системе отсчета может быть окружностью, а в другой — нет. Обычно начало отсчета данной системы отсчета совмещают с центром окружности. Если твердое тело вращается вокруг неподвижной оси, то при этом все его точки движутся по окружностям с общим центром и имеют одинаковые угловые скорости, тогда как их линейные скорости и центростремительные ускорения различны.

Если тело движется одновременно и поступательно и вращательно, то его точки движутся по винтовым линиям. При решении задач на такое сложное движение его удобно рассматривать как два независимых движения, происходящих в разных системах отсчета: поступательное — в неподвижной, а вращательное — в движущейся. Для каждой системы записывают соответствующие уравнения кинематики и решают систему уравнений с учетом, что время в разных системах отсчета между одними и теми же событиями одинаково.

Если движение происходит по произвольной кривой, то степень ее кривизны принято характеризовать радиусом кривизны R. Радиусом кривизны называют радиус окружности, которая на бесконечно малом участке криволинейной траектории сливается с ней. Чем менее искривлена траектория, тем больше ее радиус кривизны.

Рассмотрим примеры задач с решением:

  1. Пример решения задачи №27. Конец минутной стрелки часов на Спасской башне Кремля за 1 мин прошел путь S = 0,4 м. Определить длину минутной стрелки кремлевских часов l (рис. 7-2).
  2. Пример решения задачи №28. С какой угловой и линейной и скоростью движутся жители Санкт-Петербурга, участвуя вместе с земным шаром в его суточном вращении? На сколько западнее приземлился бы питерский школьник, прыгнувший на высоту 1 м, если бы во время прыжка не перемещался вместе с Землей? Радиус Земли R = 6400 км.
  3. Пример решения задачи №29. Угловая скорость лопастей вентилятора = 6,28 рад/с. Найти число оборотов N за t = 30 мин.

Переменное и равнопеременное движения по окружности

Советы: с чего начинать решать задачу и какие законы применить. Читать обязательно!

Назовем переменным движением материальной точки по окружности движение, при котором точка движется по окружности с переменной скоростью.

При переменном движении материальной точки по окружности быстрота поворота радиуса, соединяющего ее с центром окружности, характеризуется средней Примеры решения задач по физике и мгновенной Примеры решения задач по физике угловыми скоростями. Средняя угловая скорость при таком движении определяется так же, как и при равномерном движении, отношением угла поворота радиуса Примеры решения задач по физике ко времени поворота t:

Примеры решения задач по физике

Частным случаем переменного движения является равнопеременное движение по окружности, т. е. движение с постоянным угловым ускорением. Угловым ускорением Примеры решения задач по физике такого движения называют отношение изменения угловом скорости Примеры решения задач по физике ко времени t, за которое оно произошло: Примеры решения задач по физике.

Здесь Примеры решения задач по физике — начальная и Примеры решения задач по физике — конечная угловые скорости.

Если хорошо выучить формулы равномерного и равнопеременного прямолинейного движений, то, сопоставив их с формулами равномерного и равнопеременного движений материальной точки по окружности, нетрудно заметить, что, если в формулах прямолинейного движения заменить путь S на угол Примеры решения задач по физике, скорость о на угловую скорость Примеры решения задач по физике и ускорение а на угловое ускорение Примеры решения задач по физике, то все формулы прямолинейного движения превратятся в формулы движения по окружности. Следовательно, между параметрами и уравнениями кинематики прямолинейного движения и движения по окружности вокруг оси или центра вращения существует аналогия.

Аналогия между параметрами

Примеры решения задач по физике

Аналогия между уравнениями:

Примеры решения задач по физике

Таким образом, если вы хорошо запомнили формулы прямолинейного движения и знаете аналогию между параметрами, то записать формулы движения по окружности для вас не составит труда.

Если твердое тело вращается вокруг закрепленной оси, то все его точки движутся по окружностям с одинаковыми угловой скоростью, угловым ускорением и частотой вращения (периодом) и к ним применимы все приведенные выше формулы.

Решая задачи на движение по окружности, как и в случае прямолинейного движения, непременно обратите внимание на то, к какому типу относится движение, о котором идет речь. И если сказано, что колесо, например, замедляет вращение, то его угловая скорость до этого является его начальной угловой скоростью Примеры решения задач по физике, а если сказано, что оно остановилось, значит, его конечная угловая скорость равна нулю и точно так же равна нулю и его частота вращения v. Если в такой задаче речь идет о числе оборотов N, то его нельзя определять по формуле Примеры решения задач по физике, а можно только через среднюю частоту вращения Примеры решения задач по физике.

По этой же формуле можно определять число оборотов и при равноускоренном движении по окружности.

При переменном движении по окружности время одного оборота, т. е. период Г, изменяется, как и частота вращения v, но эти величины все время остаются обратными друг другу, т. е.

Примеры решения задач по физике

В случае, когда Примеры решения задач по физике или Примеры решения задач по физике, можно пользоваться упрощенной формулой Примеры решения задач по физике.

При переменном угловом ускорении определять среднюю угловую скорость как среднее арифметическое начальной и конечной угловых скоростей нельзя, поскольку за любые равные промежутки времени угловая скорость изменяется теперь произвольно.

Определение мгновенной угловой скорости: угловая скорость равна первой производной угла поворота радиуса, соединяющего материальную точку с центром окружности, по времени: Примеры решения задач по физике.

Определение углового ускорения: угловое ускорение равно первой производной угловой скорости по времени: Примеры решения задач по физике.

Если известна зависимость угловой скорости от времени t, то угол поворота Примеры решения задач по физике можно определить интегрированием

Примеры решения задач по физике

Если к моменту t = 0 радиус уже повернулся на угол Примеры решения задач по физике то

Примеры решения задач по физике

Если известна зависимость углового ускорения от времени, то

Примеры решения задач по физике

Быстроту изменения скорости при криволинейном движении характеризуют тангециальным Примеры решения задач по физике нормальным Примеры решения задач по физике и полным а ускорениями.

Определение тангенциального ускорения: тангенциальное ускорение равно первой производной модуля линейной скорости по времени: Примеры решения задач по физике. Оно характеризует быстроту изменения линейной скорости по величине.

Примеры решения задач по физике

Вектор тангенциального ускорения Примеры решения задач по физике сонаправлен с вектором линейной скорости Примеры решения задач по физике, т. е. направлен по касательной к траектории (рис. 8-1).

Быстрота изменения линейной скорости по направлению характеризуется центростремительным ускорением Примеры решения задач по физике. Центростремительное ускорение направлено по радиусу к центру кривизны О (см. рис. 8-1) перпендикулярно линейной скорости Примеры решения задач по физике, поскольку радиус всегда перпендикулярен к касательной. Значит, векторы Примеры решения задач по физике перпендикулярны друг другу.

Центростремительное ускорение Примеры решения задач по физике в учебниках по физике высшей школы часто называют нормальным ускорением и обозначают Примеры решения задач по физике.

Величина, характеризующая быстроту изменения линейной скорости как по величине, так и по направлению, называется полным ускорением Примеры решения задач по физике при переменном криволинейном движении. Полное ускорение равно векторной сумме тангенциального и центростремительного ускорений:

Примеры решения задач по физике

Поскольку угол между векторами Примеры решения задач по физике прямой, модуль полного ускорения а можно определить через модули центростремительного и тангенциального ускорений по теореме Пифагора

Примеры решения задач по физике

Тангенциальное ускорение равно произведению углового ускорения и радиуса кривизны траектории: Примеры решения задач по физике.

По значениям тангенциального и центростремительного ускорений можно судить о типе движения материальной точки.

Если центростремительное ускорение движущегося тела Примеры решения задач по физике равно нулю, а его линейная скорость и не равна нулю, то в формуле Примеры решения задач по физике радиус кривизны траектории тела R будет бесконечно велик (ведь Примеры решения задач по физике). Этот случай соответствует прямолинейному движению, потому что прямую линию можно рассматривать как окружность бесконечно большого радиуса.

Если при Примеры решения задач по физике= 0 равно нулю и тангенциальное ускорение Примеры решения задач по физике, то тело движется прямолинейно и равномерно.

Если Примеры решения задач по физике не равно нулю, Примеры решения задач по физике = 0, то тело движется криволинейно с постоянной по модулю линейной скоростью.

Если Примеры решения задач по физике, а Примеры решения задач по физике не равно 0, то тело движется прямолинейно с ускорением.

Если Примеры решения задач по физике — постоянная по модулю величина, то тело движется равномерно по окружности. При этом проходимый им путь можно определять по формуле Примеры решения задач по физике.

И наконец, если не равны нулю Примеры решения задач по физике, и то тело движется криволинейно с переменной скоростью.

Напомним, что в СИ угол измеряется в радианах (рад). 1 рад — это центральный угол, длина дуги которого равна радиусу этой дуги. Примеры решения задач по физике рад.

Если при криволинейном движении угол Примеры решения задач по физике изменяется линейно с течением времени t, т. е. Примеры решения задач по физике зависит от t в первой степени Примеры решения задач по физике, то угловая скорость такого тела или материальной точки постоянна, т. е. оно движется равномерно. Если угол Примеры решения задач по физике зависит от квадрата времени движения Примеры решения задач по физике, то это движение равнопеременное, т. е. происходит с постоянным угловым ускорением. Точно так же равнопеременным будет движение, при котором угловая скорость Примеры решения задач по физике изменяется со временем линейно, т. е. Примеры решения задач по физике зависит от t в первой степени Примеры решения задач по физике.

Если при криволинейном движении, в том числе и при движении по окружности, угол Примеры решения задач по физике зависит от Примеры решения задач по физике, где показатель степени n больше двух Примеры решения задач по физике и т. д., или если угловая скорость зависит от квадрата, куба и т. п. времени движения Примеры решения задач по физике и т. п., то такое движение происходит с переменным угловым ускорением, т. е. является переменным. При решении задач такого типа, если известна зависимость угла поворота от времени Примеры решения задач по физике, для определения угловой скорости надо брать производную, поскольку Примеры решения задач по физике. А если дана зависимость угловой скорости от времени Примеры решения задач по физике, то для определения угла поворота ф приходится интегрировать.

Если дана зависимость угловой скорости от времени сПримеры решения задач по физике, то для определения углового ускорения надо брать производную этого выражения, а если дана зависимость углового ускорения от времени, то для определения угловой скорости необходимо выполнить интегрирование.

Примеры задач с решением №7:

  1. Пример решения задачи №30. Маховое колесо, вращаясь равноускоренно, увеличило за t = 4 с частоту вращения с . Чему равно угловое ускорение колеса и число оборотов W, сделанных за это время?
  2. Пример решения задачи №31. Колесо, вращаясь равноускоренно, за t = 10 с сделало N = 20 оборотов и при этом его угловая скорость возросла в 3 раза. Чему равно угловое ускорение колеса?
  3. Пример решения задачи №32. Колесо, вращаясь равнозамедленно, за t = 5 с уменьшило свою частоту с в четыре раза. Чему равен полный угол , на который успело повернуться колесо за это время?

Динамика

Динамика. Законы сохранения

В задачах динамики учитывается влияние сил, действующих на тела, а также влияние тел на характер их движения. Этих задач так много, и они столь разнообразны, что невозможно предложить какой-то один или несколько методов их решения, к каждой задаче всякий раз нужен свой подход и новые идеи. Тем не менее мы сделаем попытку огромное количество этих разнообразных задач разделить на несколько типов, в решении которых есть нечто общее, какой-то общий метод или способ. При этом все явления будут происходить только в инерциальных системах отсчета.

В большинстве задач динамики следует делать рисунок, а в задачах на наклонную плоскость, блоки, движение связанных тел он просто необходим. Нарисовав условно движущееся тело и обозначив в его центре «жирной» точкой центр масс, сразу определите, сколько сил действует на данное тело, какие это силы и как они направлены. При этом следует помнить, что к телу приложено столько сил, сколько на него действует реальных тел. Поэтому крайне важно решить, какие тела действуют на тело, о котором говорится в данной задаче. Как правило, в большинстве задач имеется в виду, что на тело действует сила тяжести со стороны Земли, направленная вертикально вниз. Если тело имеет опору, то при этом на него действует также и сила реакции опоры, направленная всегда перпендикулярно площади опоры тела. Если на тело действует сила трения, то она будет антинадравлена перемещению тела только в том случае, если оно движется по поверхности другого неподвижного тела (земли, стола, рельсов, наклонной плоскости и т. д.) или если эта поверхность движется в ту же сторону с меньшей, чем рассматриваемое тело, скоростью. Если же эта поверхность движется с большей, чем само тело, скоростью, то сила трения, приложенная к телу, соналравлсна с его перемещением.

Отметим еще один важный момент. Часто встречаются задачи, в условии которых говорится о теле, движущемся под действием силы, направленной под углом к траектории тела. В этом случае удобно вектор силы, действующей на тело, разложить на две составляющие силы, направив эти составляющие вдоль двух осей координат. Лучше всего одну составляющую силы сонаправить с перемещением тела, а вторую направить перпендикулярно перемещению, и в уравнениях, соответствующих законам Ньютона, использовать уже не саму действующую на тело силу, а модули ее составляющих, имея в виду, что эти составляющие оказывают на тело такое же действие, как и сама сила, направленная под углом к перемещению тела. Иногда, наоборот, следует несколько сил, действующих на данное тело, заменить одной силой — равнодействующей, т. е. произвести сложение нескольких сил, и при этом решение существенно упростится. Повторяем, готовых рецептов здесь нет и быть не может, в каждом конкретном случае следует применять тот или иной способ решения. Поэтому, только решив самостоятельно определенное, но всегда немалое, количество задач, можно надеяться, что решать задачи динамики вы научились.

После того как вы решили задачу в общем виде, непременно проверьте единицу полученной величины. Правда, мы такую проверку делали не во всех задачах в целях экономии места.

Бесспорно, что уравнения кинематики используются и при решении большинства задач динамики, ведь в задачах динамики тоже идет речь о движении тел в пространстве и во времени. Поэтому, прежде чем приступить к решению задач динамики, следует еще раз хорошенько повторить все уравнения кинематики. И, конечно, выучить как следует законы и формулы самой динамики.

В ряде случаев для краткости мы называли векторные величины и их модули одинаково. Например, сила тяжести Примеры решения задач по физике, сила натяжения Примеры решения задач по физике и т. п. Кроме того, для уменьшения количества обозначений и индексов одинаковые по модулю силы, приложенные к разным телам, мы обозначали одинаковыми буквами с одинаковыми индексами.

Чтобы правильно определить, какой закон Ньютона следует использовать для решения задачи, следует ответить на вопрос: как движется тело или система тел? Если движение равномерное и прямолинейное, то применяйте первый закон Ньютона. Если движение криволинейное или прямолинейное, но происходит с ускорением, то можно применить второй закон Ньютона.

Первый закон Ньютона: существуют системы отсчета, относительно которых свободное тело сохраняет свою скорость, т. е. движется равномерно и прямолинейно. Такие системы называются инерциальными. Свободным называется тело, на которое не действуют другие тела или их действие скомпенсировано.

Второй закон Ньютона: сила, действующая на тело, равна произведению массы этого тела на ускорение, которое оно приобрело под действием этой силы: Примеры решения задач по физике.

Если сил несколько, то Примеры решения задач по физике — их равнодействующая.

Третий закон Ньютона: силы, взаимодействия двух тел равны по модулю и противоположны по направлению.

Рассмотрим задачи на первый и второй законы Ньютона отдельно.

Равномерное прямолинейное движение

Советы: с чего начинать решать задачу и какие законы применить. Читать обязательно!

Если из условия задачи следует, что тело движется равномерно и прямолинейно, значит, согласно первому закону Ньютона все действующие на него силы уравновешены, т. е. они по модулю равны друг другу, но антинаправлены. Поэтому на вашем рисунке каждому вектору силы, направленной, например, вправо, должен соответствовать вектор другой силы, равной по модулю, но направленной влево, каждому вектору силы, направленному вниз, должен соответствовать равный ему по модулю (па чертеже такой же длины) вектор силы, направленный вверх, и т. д. Если какой-то вектор силы на вашем чертеже остался неуравновешенным, значит, вы не учли еще какую-то силу, действующую на данное тело со стороны другого тела, или придумали лишнюю силу, которой на самом деле нет. И в том, и в другом случае правильно решить задачу вы уже не сможете. Потому что, если на тело действует неуравновешенная сила, то оно будет двигаться с ускорением (согласно второму закону Ньютона), но никак не равномерно и прямолинейно.

Если силы, действующие на тело, движущееся с постоянной скоростью, направлены под углом друг к другу, то можно их разложить па такие составляющие, которые уравновесят друг друга. Или, наоборот, сложить так, чтобы остались две уравновешивающие друг друга силы.

При решении задач на связанные нерастяжимой нитью тела лучше записать уравнения движения для каждого тела в отдельности. При этом если все тела движутся с постоянной скоростью, то она для них всех одинакова. Если нерастяжимая нить перекинута через невесомый блок и массой нити тоже можно пренебречь, а трение в блоке мало, то силы натяжения одной и той же нити, привязанной к двум телам, по модулю одинаковы.

Сила трения Примеры решения задач по физике равна произведению коэффициента трения Примеры решения задач по физике (другое обозначение k) и силы давления Примеры решения задач по физике, равной по модулю силе реакции опоры Примеры решения задач по физике.

Примеры задач с решением №8:

  1. Пример решения задачи №33. Поезд массой m движется равномерно и прямолинейно в горизонтальном направлении под действием силы тяги Ей противодействует сила сопротивления (рис. 9-1).
  2. Пример решения задачи №34. Тело массой m равномерно перемещается в горизонтальном направлении под действием силы , направленной под углом а к горизонту (рис. 9-2). Кроме силы тяжести , на него еще действуют сила трения сила реакции опоры .
  3. Пример решения задачи №35. Тело под действием силы тяги движется равномерно и прямолинейно вверх по наклонной плоскости с углом наклона при основании а (рис. 9-3). Силой трения можно пренебречь (например, в условии ни о силе трения, ни о коэффициенте трения ничего не сказано).
  4. Пример решения задачи №36. Автомобиль массой m = 2 т движется равномерно по горизонтальному шоссе. Найти силу тяги автомобиля , если коэффициент сопротивления движению k = 0,02.
  5. Пример решения задачи №37. Груз массой m = 100 кг равномерно перемещают по поверхности, прилагая силу под углом к горизонту. Коэффициент трения . Найти величину этой силы.
  6. Пример решения задачи №38. Как легче передвигать тело, к которому прикреплена рукоятка, расположенная под углом к горизонту: тянуть или толкать (рис. 9-14)? Коэффициент трения тела о горизонтальную поверхность равен . Определите отношение силы прилагаемой к телу, когда его тянут за рукоятку, к силе , прилагаемой, когда его толкают перед собой.

Переменное прямолинейное движение

Советы: с чего начинать решать задачу и какие законы применить. Читать обязательно!

Рассмотрим некоторые общие правила решения задач па второй закон Ньютона:

Примеры решения задач по физике

По второму закону Ньютона произведение массы тела zn, движущегося с ускорением Примеры решения задач по физике, и этого ускорения Примеры решения задач по физике равно векторной сумме всех сил, приложенных к данному телу со стороны других тел. Иными словами, произведение Примеры решения задач по физике есть равнодействующая всех реальных сил, действующих на тело массой m, движущееся с ускорением Примеры решения задач по физике. Значит, теперь эти силы не уравновешивают друг друга, поэтому, если на тело действуют две антинаправленные силы Примеры решения задач по физике, то сила Примеры решения задач по физике, сонаправленная с вектором ускорения тела, будет больше антинаправленной этому вектору силы Примеры решения задач по физике (рис. 10-1, а), поэтому и длина вектора Примеры решения задач по физике на чертеже обязательно должна быть больше длины вектора Примеры решения задач по физике. В этом случае второй закон Ньютона в векторном виде можно записать так: Примеры решения задач по физике.

Однако в проекциях на ось ОХ, поскольку силы Примеры решения задач по физике антинаправлены, он будет записан так: Примеры решения задач по физике.

Если силы Примеры решения задач по физике сонаправлены (рис. 10-1, б), то второй закон Ньютона в векторной записи и в проекциях будет выглядеть так: Примеры решения задач по физике

Примеры решения задач по физике
Примеры решения задач по физике

Если силы Примеры решения задач по физике ориентированы под углом друг к другу (рис. 10-2), то произведение Примеры решения задач по физике есть вектор, являющийся диагональю параллелограмма, построенного на этих силах как на сторонах. В этом случае второй закон Ньютона в векторной записи выглядит по-прежнему Примеры решения задач по физике,

Чтобы записать второй закон Ньютона для модулей сил Примеры решения задач по физике и Примеры решения задач по физике, нужно знать угол а между векторами Примеры решения задач по физике. Если он известен, то, пользуясь теоремой косинусов, можно записать:

Примеры решения задач по физике

Если угол Примеры решения задач по физике, то по теореме Пифагора Примеры решения задач по физике.

Примеры задач с решением №9:

  1. Пример решения задачи №39. Поезд массой m движется горизонтально с ускорением под действием силы тяги . На него действует также сила сопротивления (рис. 10-3).
  2. Пример решения задачи №40. Два тела массами и связаны нитью, перекинутой через невесомый блок, укрепленный на вершине наклонной плоскости (рис. 10-4).
  3. Пример решения задачи №41. Автомобиль массой m тормозит, двигаясь с выключенным мотором, и останавливается (рис. 10-5).
  4. Пример решения задачи №42. Два тела, связанных друг с другом, поднимают на канате вертикально вверх (рис. 10-14). Верхнее тело имеет массу нижнее — массу . К канату приложена сила тяги Система движется равноускоренно.
  5. Пример решения задачи №43. Поезд массой m = 1000 т на пути S = 500 м увеличивает скорость с = 36 км/ч до v = 72 км/ч. Коэффициент сопротивления движению = 0,005. Найти силу тяги локомотива , считая ее постоянной.
  6. Пример решения задачи №44. На участке дороги, где для автотранспорта установлена предельная скорость 30 км/ч, водитель применил аварийное торможение. Инспектор ГИБДД по следу колес обнаружил, что тормозной путь S = 12 м. Превысил ли водитель предельную скорость в момент начала торможения, если коэффициент торможения = 0,6?
  7. Пример решения задачи №45. Автодрезина ведет равноускоренно две платформы массами . Сила тяги, развиваемая дрезиной, = 1,78 кН. Коэффициент сопротивления движению = 0,05. С какой силой натянуто сцепление между платформами?

Равномерное движение по окружности

Советы: с чего начинать решать задачу и какие законы применить. Читать обязательно!

Если материальная точка движется равномерно по окружности в инерциальной системе отсчета, то равнодействующая всех сил, равная их векторной сумме, всегда направлена по радиусу к центру окружности, т. е. туда, куда направлено центростремительное ускорение точки, и равна согласно второму закону Ньютона произведению массы материальной точки и ее центростремительного ускорения Примеры решения задач по физике. Таким образом, если в задаче говорится о равномерном движении тела по окружности и если при этом на него действует только одна сила, то ее надо направить по радиусу к центру окружности и приравнять произведению массы тела и его центростремительного ускорения. Если на тело действуют несколько сил, то их надо векторно сложить так, чтобы их равнодействующая была обязательно направлена по радиусу к центру окружности, и приравнять эту равнодействующую произведению Примеры решения задач по физике. Если на такое тело действуют две силы, одна из которых направлена по радиусу к центру окружности, а вторая антинаправлена ей, то больше по модулю будет всегда та, которая направлена по радиусу к центру. При этом произведение массы тела и его центростремительного ускорения будет равно по модулю разности большей и меньшей сил. Рассмотрим примеры на применение второго закона Ньютона к этому виду движения. Во всех примерах и задачах тела движутся относительно инерциальной системы отсчета.

Примеры задач с решением №10:

  1. Пример решения задачи №46. Автомобиль движется по вогнутому мосту равномерно, т. е. с постоянной по модулю скоростью. При этом на него действуют две силы: сила тяжести mg и сила реакции опоры , причем сила реакции опоры по модулю больше силы тяжести, ведь именно сила реакции опоры направлена по радиусу к центру окружности, который расположен вверху над мостом.
  2. Пример решения задачи №47. Тело массой m вращается по окружности в горизонтальной плоскости, будучи подвешенным на нити (рис. 11-4). Такая система тел называется коническим маятником.
  3. Пример решения задачи №48. Конькобежец массой m движется по окружности. Как правило, в такой задаче силой трения скольжения пренебрегают, потому что когда конек режет лед, то между ним и льдом образуется прослойка воды из-за таяния льда.
  4. Пример решения задачи №49. Летчик массой m делает «мертвую петлю» в вертикальной плоскости. В задаче речь идет о силах давления летчика на кресло в верхней и нижней точках петли (рис. 11-6).
  5. Пример решения задачи №50. На горизонтальной дороге автомобиль делает поворот радиусом R = 16 м. Какова наибольшая величина скорости и, которую может развить автомобиль, чтобы его не занесло, если коэффициент трения скольжения колес о дорогу k = 0,4?
  6. Пример решения задачи №51. Конькобежец движется со скоростью и ~ 10 м/с по окружности радиусом R — 30 м. Под каким углом а к горизонту он должен наклониться, чтобы сохранить равновесие? Трением пренебречь.
  7. Пример решения задачи №52. С какой наибольшей скоростью у может ехать велосипедист по горизонтальной поверхности, описывая дугу радиусом R = 80 м, если коэффициент трения резины о поверхность = 0,5? На какой угол а от вертикального он при этом отклоняется?

Закон всемирного тяготения

Советы: с чего начинать решать задачу и какие законы применить. Читать обязательно!

Закон всемирного тяготения: две материальные точки притягиваются друг к другу с силой, прямо пропорциональной произведению их масс Примеры решения задач по физике и обратно пропорционально квадрату расстояния между ними:

Примеры решения задач по физике

Задачи на эффекты гравитации, как правило, сводятся ко второму закону Ньютона, где силой или одной из сил является сила тяготения. Поэтому, если в условии задачи говорится о движении спутника вокруг Земли или другой планеты, или о движении Земли вокруг Солнца и т. д., то имеет смысл начать решение задачи со второго закона Ньютона, записанного в скалярном виде следующим образом:

Примеры решения задач по физике

Здесь Примеры решения задач по физике — гравитационная постоянная, m -кг масса того тела, которое движется по круговой орбите, Примеры решения задач по физике — его центростремительное ускорение, — сила тяготения этого тела к планете, М — масса планеты, r — расстояние от тела до центра планеты.

С учетом этого Примеры решения задач по физике.

Если говорится о высоте тела Н над поверхностью планеты и радиусе планеты R (его можно взять из справочника), то r = R + Н и тогда Примеры решения задач по физике.

Если высота тела над поверхностью планеты мала по сравнению с радиусом планеты (полезно знать, что радиус земного шара Примеры решения задач по физике.

Если в условии задачи сказано, что тело находится на высоте 40 м над поверхностью земли, то в законе всемирного тяготения за r смело можно принимать радиус земного шара Примеры решения задач по физике м, а если говорится о высоте в 1000 и более км, то ослабление гравитации уже надо учитывать, т. е. к радиусу Земли в знаменателе закона всемирного тяготения следует прибавлять и эту высоту.

Если в процессе решения задачи вам приходится иметь дело с произведением гравитационной постоянной на массу Земли Примеры решения задач по физике, чтобы избежать действий с большими степенями и громоздких вычислений, можно воспользоваться формулой Примеры решения задач по физике или Примеры решения задач по физике и заменить Примеры решения задач по физике, что гораздо проще вычислить. Надо только помнить, что Примеры решения задач по физике только на земной поверхности и на высотах, много меньших радиуса Земли. Если речь идет, например, о спутнике, то там ускорение свободного падения значительно меньше Примеры решения задач по физике, и здесь ускорение свободного падения следует определять из формулы

Примеры решения задач по физике

Если необходимо определить силу тяготения шаров, имеющих полость, то эту полость можно принять за тело с отрицательной массой. При этом можно вначале определить силу тяготения сплошных шаров, а затем из нес вычесть силу тяготения одного шара к полости во втором шаре или силу тяготения полостей друг к другу, если они наличествуют в обоих шарах.

Определение силы тяжести: сила тяжести Примеры решения задач по физике — это сила, действующая на тело вследствие его притяжения к планете. Она равна произведению массы тела и ускорения свободного падения. На полюсе Земли сила тяжести равна силе тяготения тела к Земле.

На экваторе эффект суточного вращения Земли, влияющий на величину силы тяжести, наибольший. Там величина силы тяжести определяется выражением Примеры решения задач по физике.

Здесь m — масса тела, g — ускорение свободного падения, Примеры решения задач по физике -сила тяготения, Примеры решения задач по физике — угловая скорость суточного вращения Земли вокруг своей оси, R — радиус Земли.

Вес тела — это сила, с которой тело действует на опору или подвес вследствие притяжения к планете.

Вес тела равен силе тяжести, когда тело покоится или движется равномерно и прямолинейно вверх или вниз:

Примеры решения задач по физике

Вес тела, опускающегося с ускорением или поднимающегося с замедлением, уменьшается и становится меньше силы тяжести. В этом случае

Примеры решения задач по физике

Если тело свободно падает, Примеры решения задач по физике. Это явление называется невесомостью.

Вес тела, поднимающегося с ускорением или опускающегося с замедлением, увеличивается и становится больше силы тяжести и его веса в состоянии покоя. Такое состояние называют перегрузкой. В этом случае

Примеры решения задач по физике

Перегрузкой n называют также величину, показывающую, во сколько раз вес тела Р, поднимающегося с ускорением или опускающегося с замедлением, больше веса этого же тела в состоянии покоя Примеры решения задач по физике.

Примеры решения задач по физике

Примеры задач с решением №12:

  1. Пример решения задачи №53. Во сколько раз планета Плутон притягивается к Солнцу слабее Земли, если Плутон удален от Солнца на расстояние, в 40 раз большее, чем Земля? Массы Земли и Плутона приблизительно одинаковы.
  2. Пример решения задачи №54. Во сколько раз ускорение свободного падения g на расстоянии от центра Земли, равном n радиусам Земли, меньше ускорения свободного падения на земной поверхности?
  3. Пример решения задачи №55. Расстояние между Землей и Луной равно 60 земным радиусам. В какой точке прямой, соединяющей центры Земли и Луны, ракета, движущаяся к Луне, будет притягиваться к Земле и Луне с одинаковой силой? Масса Земли в 81 раз больше массы Луны, а радиус Земли — в 3,8 раза больше радиуса Луны.

Закон сохранения импульса

Советы: с чего начинать решать задачу и какие законы применить. Читать обязательно!

Импульсом тела Примеры решения задач по физике называется произведение массы тела m и скорости Примеры решения задач по физике.

Импульс системы тел равен векторной сумме импульсов тел, составляющих систему. Если на систему тел не действуют внешние силы, то такая система называется замкнутой. Импульс замкнутой системы сохраняется при всех изменениях внутри системы. В этом состоит закон сохранения импульса системы тел.

Закон сохранения импульса удобен при решении задач, в которых можно не учитывать или не определять внутренние силы, действующие в данной системе тел. В этом случае решение задачи зачастую получается значительно проще и короче, нежели при использовании законов Ньютона. Однако при этом следует помнить, что закон сохранения импульса выполняется только применительно к замкнутым системам, т. е. к таким системам тел, на которые не действуют внешние силы.

В замкнутой системе тел сумма импульсов всех тел, составляющих систему, до взаимодействия равна сумме импульсов этих же тел после взаимодействия. При этом следует помнить, что импульс Примеры решения задач по физике — величина векторная, значит, и сумма импульсов — это векторная сумма. Но поскольку при решении задач мы используем скалярные величины, то при решении задач на закон сохранения импульса следует переходить от векторных величин импульсов к их проекциям на выбранные ранее направления.

Проще всего решать такие задачи, когда импульсы всех тел ориентированы вдоль одной прямой. При этом проекции импульсов равны модулям самих импульсов, и задача состоит в том, чтобы выбрать одно из направлений положительным, тогда перед импульсами, сонаправленными с этим положительным направлением, следует поставить знак «плюс», а перед импульсами, направленными противоположно, нужно ставить знак «минус». Тогда по закону сохранения алгебраическая сумма всех импульсов тел с учетом их знаков до взаимодействия равна алгебраической сумме всех импульсов тел после взаимодействия.

Рассмотрим пример. Из орудия массой Примеры решения задач по физике установленного на движущейся платформе массой Примеры решения задач по физике, производят выстрел в направлении, противоположном движению платформы. Скорость платформы до выстрела — Примеры решения задач по физике, скорость ее после выстрела — Примеры решения задач по физике, масса снаряда — Примеры решения задач по физике, его скорость при вылете из ствола орудия — Примеры решения задач по физике. Если принять положительным направление движения платформы до выстрела и считать, что после выстрела оно осталось прежним, то закон сохранения импульса применительно к этому случаю в векторной записи Примеры решения задач по физике а для модулей импульсов с учетом их направления: Примеры решения задач по физике.Примеры решения задач по физике

Поскольку выстрел произведен в противоположном движению платформы направлении, то перед импульсом снаряда после выстрела Примеры решения задач по физике мы поставим «минус».

Если до взаимодействия сумма импульсов всех тел была равна нулю, то она останется равной нулю и после взаимодействия.

Примеры решения задач по физике

Например, до старта сумма импульсов ракеты и топлива была равна нулю. После старта ракета летит со скоростью Примеры решения задач по физике, а отработанные газы вылетают со скоростью Примеры решения задач по физике. Масса ракеты — Примеры решения задач по физике масса топлива — Примеры решения задач по физике. Приняв положительным направление движения ракеты, запишем закон сохранения импульса применительно к этому случаю следующим образом в векторном виде: Примеры решения задач по физике, а для модулей импульсов: Примеры решения задач по физике или Примеры решения задач по физике.

Если импульсы тел до или после взаимодействия (или и до, и после) ориентированы под углом друг к другу, не равным 0° или 180°, то проекции этих импульсов на выбранное направление уже не будут численно равны самим импульсам (рис. 13-1, а). В этом случае для записи проекций импульсов без тригонометрических функций в большинстве случаев не обойтись. В некоторых случаях, если углы между импульсами прямые, приходится применять теорему Пифагора, а если углы не прямые, то теорему косинусов.

Рассмотрим пример: Граната массой m, летевшая со скоростью Примеры решения задач по физике, разорвалась на два осколка массами Примеры решения задач по физике, разлетевшимися со скоростями Примеры решения задач по физике под углом а друг к другу (рис. 13-1, б). В векторной записи закон сохранения импульса применительно к этому случаю Примеры решения задач по физике.

При этом мы обязательно должны учесть, что, если импульс гранаты до взрыва был равен Примеры решения задач по физике, то векторы импульсов осколков Примеры решения задач по физике надо сложить так, чтобы их векторная сумма была равна вектору Примеры решения задач по физике. При этом векторы Примеры решения задач по физике должны быть сторонами параллелограмма, диагональю которого будет являться вектор Примеры решения задач по физике. Поэтому в скалярной записи закон сохранения импульса будет записан с использованием теоремы косинусов так: Примеры решения задач по физикеПримеры решения задач по физике

Здесь мы воспользовались способом векторного сложения импульсов, не проецируя векторы импульсов на выбранные оси координат, т. е. не прибегая к координатному способу решения задачи. Можно записать закон сохранения импульса для этого случая в проекциях векторов импульсов на оси координат ОХ и ОУ, направив ось ОХ по направлению импульса гранаты, а ось ОУ -перпендикулярно оси ОХ. Тогда закон сохранения импульса в скалярной записи примет вид (рис. 13-2) Примеры решения задач по физикеПримеры решения задач по физике.

Если вы не допустите ошибки в процессе дальнейшего решения задачи, то результат решения обоими способами будет одинаков. Отметим, что первый способ решения предпочтительнее, когда во взаимодействии участвуют только два тела, например, когда граната разрывается только на два осколка: тогда задача решается

Примеры решения задач по физике

проще. Если же граната разрывается на три или более осколков, то лучше воспользоваться способом проекций импульсов на оси координат, так меньше вероятность допустить ошибку.

Если в условии задачи о снаряде, разорвавшемся на два осколка, сказано, что их массы соотносятся, например, как 2:3, то надо представить себе, что вся граната состоит из 2 + 3 = 5 частей, и тогда на первый осколок массой Примеры решения задач по физике. приходится Примеры решения задач по физике массы всего снаряда m, т. е. Примеры решения задач по физике, а на второй осколок массой Примеры решения задач по физике приходится Примеры решения задач по физике массы снаряда Примеры решения задач по физике.

Отметим, что в приведенных примерах есть одно отступление от условия, при котором закон сохранения импульса выполняется. Дело в том, что осколки гранаты не составляют замкнутую систему, на них действуют силы тяжести, как и на саму гранату до взрыва. Однако внутренние силы, возникающие в момент разрыва гранаты, так велики и во столько раз превосходят силу тяжести, что ею здесь смело можно пренебречь и считать систему этих тел замкнутой. А внутренние силы, как бы велики они ни были, как известно, не в состоянии изменить импульс системы.

Условие замкнутости системы при применении закона сохранения импульса можно нарушать еще в одном случае: когда импульсы тел до и после взаимодействия направлены перпендикулярно внешним силам, действующим на эти тела, например, когда тела движутся до и после взаимодействия горизонтально, а на них действует в вертикальном направлении сила тяжести. Тогда закон сохранения импульса выполняется для их проекций на ось координат, перпендикулярную векторам внешних сил.

Если вам известно, куда летел снаряд до взрыва и куда полетел один из двух осколков после взрыва, то определить, куда полетел второй осколок, не очень сложно. Нужно изобразить графически вектор импульса снаряда до взрыва, а затем с помощью штриховых линий полученную фигуру достроить до параллелограмма так, чтобы импульс снаряда до взрыва был его диагональю, а импульс первого осколка — одной из сторон. Другая сторона этого параллелограмма и будет изображать импульс второго осколка (рис. 13-2).

Необходимо отличать такие понятия, как импульс силы и импульс тела. Импульс тела (или системы тел) Примеры решения задач по физике — это произведение массы тела (или системы) на скорость тела (или системы): Примеры решения задач по физике. Импульс силы Примеры решения задач по физике — это произведение силы, действующей на тело (или систему тел), на время ее действия. Изменение импульса тела (или системы) Примеры решения задач по физике согласно теореме об импульсе (основному закону динамики) равно импульсу силы, подействовавшей в течение времени Примеры решения задач по физике на тело (или систему): Примеры решения задач по физике.

Следует знать, что при составлении уравнений закона сохранения импульса нужно всегда брать абсолютную скорость тел, т. е. скорость тел относительно неподвижной системы отсчета.

Примеры задач с решением №13:

  1. Пример решения задачи №56. Шофер выключил двигатель в тот момент, когда скорость автомобиля была 54 км/ч. Через = 2 с скорость автомобиля упала до v = 18 км/ч. Чему был равен импульс автомобиля в момент выключения двигателя? Чему равно изменение импульса автомобиля ? Чему равен импульс силы сопротивления движению автомобиля ? Сила сопротивления движению в течение времени была постоянна и составляет = 6 кН.
  2. Пример решения задачи №57. Три сцепленных вагона массами m, 2m и Зm, где m = 2 т, движущиеся со скоростью = 1,8 км/ч, столкнулись с неподвижным вагоном, после чего они все стали двигаться со скоростью v = 0,9 км/ч. Чему равна масса неподвижного вагона?
  3. Пример решения задачи №58. Снаряд, выпущенный вертикально вверх, взорвался на максимальной высоте. При этом образовалось три осколка. Два осколка разлетелись под прямым углом друг к другу. Масса первого осколка его скорость масса второго осколка , его скорость . Чему равна скорость третьего осколка массой ?

Работа и мощность

Советы: с чего начинать решать задачу и какие законы применить. Читать обязательно!

Напомним формулы работы и мощности в механике:

Примеры решения задач по физике

Здесь А — работа, F — модуль силы, совершающей работу, S -модуль перемещения, Примеры решения задач по физике — угол между векторами силы и перемещения, k — жесткость, х — деформация, N — мощность, v — скорость, t — время.

В формулах на нахождение работы и мощности не забывайте определить угол а между векторами силы, совершающей работу, и вектором перемещения. В противном случае вы рискуете потерять «минус» и получить неверный ответ.

Подчеркнем, что в формулах совершает работу или развивает мощность некоторое тело, которое действует на данное тело с определенной силой Примеры решения задач по физике. Это может быть сила тяги или сила натяжения, или, наконец, сила трения и т. д., но не равнодействующая всех сил, действующих на данное тело. Например, если под действием силы тяги Примеры решения задач по физике поезд массой m движется с ускорением-а, то работа силы тяги Примеры решения задач по физике.

По второму закону Ньютона Примеры решения задач по физике откуда

Примеры решения задач по физике

Тогда Примеры решения задач по физике.

Если под действием силы натяжения Примеры решения задач по физике тело массой m поднимается вверх с ускорением а на высоту h, то работа, совершаемая этой силой, Примеры решения задач по физике.

По второму закону Ньютона Примеры решения задач по физике, откуда

Примеры решения задач по физике

Тогда Примеры решения задач по физике.

Если перемещаемое тело нельзя рассматривать как материальную точку, то в формуле работы S есть модуль перемещения его центра масс. Например, если канат длиной l и массой m поднимают равномерно за один его конец на всю его длину, то модуль перемещения его центра масс будет равен Примеры решения задач по физике, поэтому работа прилагаемой к канату силы Примеры решения задач по физике будет:

Примеры решения задач по физике

Если тело движется равномерно, то в формуле мощности v -скорость этого движения, а если оно движется с переменной скоростью, то в этой формуле о, как правило, является средней скоростью его движения, если речь идет о средней мощности, или мгновенной скоростью, если говорится о мощности тела или механизма в данный момент времени. Работа при упругой деформации определяется по формуле

Примеры решения задач по физике

где k — жесткость и х— деформация.

Если речь идет о работе нескольких сил, то их работа равна алгебраической сумме работ, совершенных каждой силой в отдельности. Если силы приложены к одному и тому же телу, то полная работа всех этих сил равна произведению модуля результирующей силы на модуль перемещения и на косинус угла между векторами силы и перемещения.

Отметим, что работа — это процесс. Ее нельзя накопить, чтобы потом израсходовать, затратить на что-либо. Тем не менее термин «затраченная работа» используется в физике при определении коэффициента полезного действия (КПД) механизмов.

Определение КПД Примеры решения задач по физике: коэффициентом полезного действия механизма называется отношение полезной работы Примеры решения задач по физике, совершенной этим механизмом, ко всей затраченной им работе Примеры решения задач по физике выраженное в процентах:

Примеры решения задач по физике

При этом полезной работой считается работа, которую надо совершить, а затраченной — работа, которую механизм на самом деле совершает. Например, когда тянут тело по наклонпой плоскости с помощью веревки, то полезная работа равна произведению силы тяжести, действующей на тело, на высоту наклонной плоскости р, а затраченная работа равна произведению силы натяжения веревки Примеры решения задач по физике на длину наклонной плоскости Примеры решения задач по физике и Примеры решения задач по физике. В этом случае

Примеры решения задач по физике

КПД может быть выражен не в процентах, а в частях. В этом случае в формуле КПД не надо отношение работ умножать на 100%, т. е. она примет вид

Примеры решения задач по физике

Затраченная работа всегда больше полезной, поэтому КПД любых механизмов всегда меньше 100%. Никакой механизм не может дать выигрыша в работе, а может помочь выиграть только в силе, но при этом обязательно происходит проигрыш в расстоянии. Это утверждение называют «золотым правилом механики».

Примеры задач с решением №14:

  1. Пример решения задачи №59. Груз массой m поднимают равномерно на канате от основания наклонной плоскости к ее вершине (рис. 14-1). Длина наклонной плоскости l, высота h. Какую работу совершает человек, поднимающий груз? Чему равна работа силы тяжести ? Чему равна работа силы трения , если коэффициент трения груза о плоскость равен ?
  2. Пример решения задачи №60. Подъемный кран поднимает в течение времени t = 2 мин стальную плиту со скоростью v = 0,5 м/с. Длина плиты l=4м, ширина r — 50 см, высота h = 40 см. Какую полезную работу А совершает кран? Плотность стали
  3. Пример решения задачи №61. Мальчик бросил вверх мяч массой m = 200 г и поймал мяч при его падении в точке бросания. При этом мяч проделал путь S = 8 м. Чему равна работа совершенная силой тяжести при подъеме мяча на максимальную высоту? Чему равна работа , совершенная силой тяжести при падении мяча с этой высоты? Чему равна работа , совершенная силой тяжести на всем пути, проделанном мячом?

Закон сохранения энергии в механике

Советы: с чего начинать решать задачу и какие законы применить. Читать обязательно!

Если тело способно совершить работу, значит, оно обладает энергией. Энергия в механике определяется положением тел относительно друг друга и их скоростями.

Механическая энергия Е равна сумме потенциальной Примеры решения задач по физике и кинетической Примеры решения задач по физике энергий: Примеры решения задач по физике.

Кинетическая энергия — это энергия, которой обладает тело вследствие своего движения.

Половина произведения массы тела на квадрат его скорости определяет величину его кинетической энергии: Примеры решения задач по физике

Работа, совершенная некоторой силой, равна изменению кинетической энергии тела, на которое эта сила действовала:

Примеры решения задач по физике

Эта теорема справедлива как в случае действия постоянной, так и в случае действия переменной сил, причем не имеет значения, к какому виду эти силы относятся.

Потенциальная энергия тела — это энергия, которой оно обладает вследствие того, что находится в силовом поле, или вследствие взаимодействия с другими телами.

Работа силы тяжести или силы упругости равна изменению потенциальной энергии тела, взятому со знаком «минус»:

Примеры решения задач по физике

Формула потенциальной энергии тела на высоте h, во много раз меньшей радиуса Земли, выглядит так: Примеры решения задач по физике.

Потенциальная энергия тела в гравитационном поле планеты определяется формулой Примеры решения задач по физике.

Потенциальная энергия упругодеформированного тела

Примеры решения задач по физике

При решении задач на закон сохранения энергии следует сразу определить, какой закон можно применить в данной задаче: закон сохранения механической энергии или общий закон сохранения энергии тел.

Закон сохранения механической энергии: в замкнутой системе тел, где действуют между телами только силы тяжести или силы упругости, полная механическая энергия системы сохраняется.

Общий закон сохранения и превращения энергии: энергия не возникает из ничего и не исчезает, а лишь превращается из одного вида в другой в эквивалентных количествах.

Закоп сохранения механической энергии можно использовать в тех случаях, когда система тел замкнута, т. е. на тело или систему тел не действуют внешние силы или они друг друга компенсируют, и, кроме того, в самой системе тел не действуют неконсервативные силы трения или сопротивления, из-за которых механическая энергия превращается во внутреннюю тепловую энергию. Иными словами, закон сохранения механической энергии можно применять, когда тело находится под действием только внутренних сил тяжести (тяготепия) или сил упругости и ничего не сказано о действии сил трения (не дан коэффициент трения или сопротивления, не говорится, что в процессе движения или взаимодействия тела нагреваются, и т. п.).

Начиная решать задачу на закон сохранения механической энергии, сделайте хотя бы простенький чертеж, на котором отметьте все положения движущегося тела, начиная с начального положения и до его конечного положения, и обозначьте, где у тела была какая энергия с соответствующими индексами (где кинетическая, где потенциальная, где начальная, где конечная, где промежуточная, если о пей идет речь). При этом, если тело находится на высоте, то за нулевой уровень потенциальной энергии можно принять поверхность земли, т. е. считать, что на земле потенциальная энергия тела становится равной нулю. А если тело упруго деформировано, то за нулевой уровень потенциальной энергии можно принять положение, при котором его деформация равна нулю, например, когда пружина не сжата и не растянута.

Если в изолированной системе тел действуют только силы тяжести или силы упругости (сила реакции опоры Примеры решения задач по физике тоже относится к силам упругости), то потенциальная энергия тела может превращаться в кинетическую, и наоборот, но при этом полная механическая энергия системы Е в каждой точке траектории, по которой движется тело, остается неизменной, т. е. сумма потенциальной Примеры решения задач по физике и кинетической Примеры решения задач по физике энергий этого тела будет одна и та же. В этом состоит закон сохранения механической энергии, который очень удобно применять при решении задач, когда пе требуется определять силы, действующие на тело в данной замкнутой системе. Достаточно определить кинетическую или потенциальную энергию тел в одном положении (или обе эти энергии) и в другом, выразив их через соответствующие формулы кинетической и потенциальной энергий, а затем суммарные энергии тела в двух разных положениях приравнять друг другу. И из полученного равенства вы можете иногда сразу определить искомую величину, не применяя законы Ньютона или уравнения кинематики. Если же полученное равенство энергии не позволяет сразу найти то, что надо, то тогда можпо добавить закон сохранения импульса (как при упругом ударе) или необходимые уравнения кинематики и динамики.

Примеры задач с решением №15:

  1. Пример решения задачи №62. Тело массой т падает свободно на землю с высоты Н без начальной скорости.
  2. Пример решения задачи №63. Тело соскользнуло по желобу с высоты Н без начальной скорости и описало петлю радиусом R в вертикальной плоскости (рис. 15-7). Если трение отсутствует, то суммарная потенциальная и кинетическая энергия в любой точке траектории одинакова и равна начальной потенциальной энергии в высшей точке.
  3. Пример решения задачи №64. Найти потенциальную и кинетическую энергии тела массой m = 5 кг, падающего свободно с высоты Н = 10 м, на расстоянии h = 4 м от поверхности земли.
  4. Пример решения задачи №65. Тело массой т = 5 кг падает свободно с высоты Н = 12 м (см. рис. 15-10). Найти изменение его потенциальной энергии через t = 0,5 с после начала падения. Начальная скорость = 0.
  5. Пример решения задачи №66. Снаряд, получивший при выстреле начальную скорость = 300 м/с, летит вертикально вверх (рис. 15-1, в). На какой высоте h его кинетическая энергия станет равна потенциальной ? Сопротивлением пренебречь.

Вращательное движение твердого тела

Советы: с чего начинать решать задачу и какие законы применить. Читать обязательно!

В рассматриваемых нами задачах все твердые тела вращаются вокруг неподвижной оси или движущейся при качении тела параллельно самой себе. В этом случае все векторные величины, характеризующие вращение тела, направлены вдоль оси вращения, что позволяет сразу переходить к алгебраической записи соответствующих уравнений, т. е. записи этих уравнений в скалярном виде с учетом соответствующих знаков. Поскольку векторы угловой скорости Примеры решения задач по физике, углового ускорения Примеры решения задач по физике, момента силы Примеры решения задач по физике и момента импульса Примеры решения задач по физике направлены вдоль оси вращения, то, выбрав за положительное направление поступательного движения правого винта, когда вращение его головки совпадает с направлением вращения твердого тела, перед величинами, векторы которых антинаправлены положительному направлению, будем ставить «минус».

Например, на рис. 16-1, а) тело под действием силы F вращается против часовой стрелки, поэтому векторы его начальной Примеры решения задач по физике и конечной Примеры решения задач по физике угловых скоростей положительны, ведь они сонаправлены с положительным направлением, которое показывает большой палец правой руки на рис. 16-1, а), когда четыре пальца этой руки свер1гуты в направлении вращения твердого тела (эти четыре пальца показывают, как в этом случае вращается правый винт, а большой палец показывает направление его поступательного движения). Па тело на рис. 16-1, б), вращавшееся вначале с угловой скоростью Примеры решения задач по физике стала действовать тормозящая сила трения Примеры решения задач по физике, направленная в точке m на нас, вследствие чего оно стало двигаться замедленно, поэтому его угловое ускорение стало отрицательным. Вот почему вектор углового ускорения Примеры решения задач по физике на этом рисунке направлен вниз. По этой же причине антинаправлен положительному направлению оси ОХ и вектор момента силы трения Примеры решения задач по физике, значит, он тоже отрицателен. А вот вектор момента импульса

Примеры решения задач по физике

Примеры решения задач по физике положителен и в этом случае, ведь он всегда сонаправлен с вектором угловой скорости, независимо от того, увеличивается опа или уменьшается.

Материал этой темы достаточно сложен. Чтобы легче было в нем разобраться, мы приведем таблицу, демонстрирующую аналогию между «симметричными» величинами поступательного и вращательного движений, а также между соответствующими уравнениями:

Примеры решения задач по физике

Основное уравнение динамики поступательного движения

Примеры решения задач по физике

Основное уравнение динамики вращательного движения

Примеры решения задач по физике

Работа при поступательном движении

Примеры решения задач по физике

Работа при вращательном движении

Примеры решения задач по физике

Кинетическая энергия поступательного движения

Примеры решения задач по физике

Кинетическая энергия вращательного движения

Примеры решения задач по физике

Момент инерции цилиндра (рис. 16-2, a) Примеры решения задач по физике . (16-1)

По формуле (16-1) можно также определить момент инерции однородных диска и стержня относительно оси, проходящей через их центр перпендикулярно плоскости диска или основанию стержня. Однако если ось вращения Примеры решения задач по физике проходит через центр стержня перпендикулярно его длине I (рис. 16-2, б), то расчеты показывают, что в этом случае момент инерции вычисляется по формуле

Примеры решения задач по физике

Момент инерции однородного шара радиусом R относительно оси вращения, проходящей через его центр (рис. 16-2, в), определяется формулой

Примеры решения задач по физике
Примеры решения задач по физике

Момент инерции диска, толщина которого много меньше его диаметра, относительно оси вращения, совпадающей с диаметром диска (рис. 16-2, г), определяется формулой

Примеры решения задач по физике

Момент инерции кольца массой т с радиусом R относительно оси, проходящей через его центр перпендикулярно плоскости кольца (рис. 16-2, д), определяется по такой же формуле, что и момент инерции материальной точки:

Примеры решения задач по физике

Таким образом, момент инерции тела зависит от его массы, распределения массы в теле, размеров и формы тела и положения оси вращения. Каждое тело обладает бесконечно большим числом значений моментов инерций, соответствующих бесконечно большому числу возможных осей вращения.

Примеры решения задач по физике

Если ось вращения не проходит через центр масс тела (рис. 16-3), то момент инерции тела относительно этой оси можно определить по теореме Штейнера: момент инерции тела J относительно произвольной оси mn равен сумме момента инерции этого тела Примеры решения задач по физике относительно оси вращения Примеры решения задач по физике, проходящей через центр масс тела С параллельно оси mn, и произведения массы тела на квадрат расстояния d между этими осями: Примеры решения задач по физике.

В задачах на блоки, через которые перекинута нить (веревка, канат, шнур), обращайте внимание на то, каким является блок: весомым или невесомым, иными словами, следует учитывать массу блока или ею можно пренебречь. В задачах на блоки, решенных нами ранее, массой блока мы пренебрегали и в связи с этим считали, что силы натяжения нити по обе стороны одинаковы, не вдаваясь в объяснение, почему это так. Теперь постараемся объяснить этот факт. Действительно, если масса блока равна нулю, то нулю равен и его момент инерции J. Но тогда левая часть уравнения

Примеры решения задач по физике

записанного применительно к рис. 16-4, обращается в нуль, из-за чего момент Примеры решения задач по физике силы натяжения Примеры решения задач по физике