Готовые задачи по финансовой математики

Оглавление:

Задачи по финансовой математике

Готовые задачи по финансовой математике.

Простые проценты

К оглавлению…

Рассмотрим простейшую кредитную операцию — выдачу займа. Эта операция характеризуется следующими параметрами:

Задачи по финансовой математики — сумма предоставляемых денежных средств,

Задачи по финансовой математики — срок, на который предоставляется сумма Задачи по финансовой математики, (он измеряется в заранее заданных единицах времени),

Задачи по финансовой математики — процент — сумма платы за кредит,

Задачи по финансовой математики — полная стоимость кредита.

Параметры Задачи по финансовой математики измеряются в денежных единицах (доллар, рубль, марка, тысяча рублей и т.д.) и связаны следующим соотношением:

Задачи по финансовой математики

Процентное соотношение

Задачи по финансовой математики

называется процентной ставкой за период Задачи по финансовой математики и измеряется в процентах (%). Если процентная ставка задана не в процентах, а в единицах, например, Задачи по финансовой математики, то чтобы найти процентную ставку в процентах (%) необходимо имеющуюся величину умножить на 100%. В данном случае имеем Задачи по финансовой математики.

Хотелось бы обратить внимание на то, что во всех приведенных ниже формулах предполагается, что процентная ставка задана в единицах. Поэтому при решении задач, где процентная ставка задана в %, не забывайте сделать необходимые преобразования.

Если Задачи по финансовой математики — годовая процентная ставка (процентная ставка за период — 1 год), то

Задачи по финансовой математики

где Задачи по финансовой математики — срок времени, измеряемый в годах.

Возможно эта страница вам будет полезна:

Предмет финансовая математика

Задача №1

Некоторое частное лицо взяло заем у Первого Национального Банка в размере $150. За эту услугу банк потребовал плату в размере $3,75. Заем взят на 6 месяцев. Найти процентную ставку за этот период.

Решение:

Обозначим процентную ставку за 6 месяцев Задачи по финансовой математики, тогда согласно формуле (1.2)

Задачи по финансовой математики

Ответ: Процентная ставка за 6 месяцев = 2,5%.

Пусть заданы: некоторая денежная сумма Задачи по финансовой математики — процентная ставка за 1 год (годовая процентная ставка), Задачи по финансовой математики — срок времени, измеряемый в годах. Величина, задаваемая формулой

Задачи по финансовой математики

называется простым процентом (^измеряется в денежных единицах). Величина

Задачи по финансовой математики

называется накопленным значением суммы Задачи по финансовой математики по ставке простых процентов за время Задачи по финансовой математики при годовой процентной ставке Задачи по финансовой математики (формула (1.5) часто называется формулой простых процентов).

Заметим, что срок может быть задан в любых временных единицах (месяцах или днях).

Предположим, что срок задан в месяцах. Например, он равен 6 месяцам. Так как 6 месяцев это 6/12 года = 0,5 года, то Задачи по финансовой математики = 0,5.

Если срок задан в днях, то его перевод в годовые единицы измерения может быть произведен двумя способами:

Первый — берется отношение числа дней к 360, а второй -отношение числа дней к полному числу дней в году, т.е. к 365 или, если год високосный, к 366. В первом случае говорят об обычных простых процентах, во втором случае — о точных простых процентах. Если год в задаче не указан, считается, что он не високосный, если не указано, что проценты точные, предполагается, что они обычные.

Возможно эта страница вам будет полезна:

Помощь по финансовой математике

Задача №2

Найти точные простые проценты и накопленную сумму для суммы $500 вложенной на 100 дней под 4% годовых.

Решение:

В нашем случае

Задачи по финансовой математики

Считаем, что год не високосный, следовательно, Задачи по финансовой математики. Таким образом, Задачи по финансовой математики. Согласно формуле (1.5) Задачи по финансовой математики.

Ответ: Точные простые проценты — $5,48, накопленная сумма — $505,48.

На практике возможна следующая ситуация: инвестор желает через определенный срок Задачи по финансовой математики, положив деньги в банк, получить некоторую сумму Задачи по финансовой математики. Предположим, что годовая процентная ставка в банке известна и равна Задачи по финансовой математики. Спрашивается, какую сумму Задачи по финансовой математики инвестор должен положить в банк сегодня, чтобы спустя срок Задачи по финансовой математики накопить сумму Задачи по финансовой математики? Согласно формуле (1.5)

Задачи по финансовой математики

Задача №3

Спустя 90 дней после займа заемщик возвращает сумму в размере $100. Найти сумму займа, считая, что при обычных простых процентах годовая процентная ставка равна 8%.

Решение:

По условию задачи

Задачи по финансовой математики

Поэтому, согласно формуле (1.6), Задачи по финансовой математики.

Ответ: Сумма займа равна $98,04.

Из формулы (1.4) выведем соотношения

Задачи по финансовой математики

для вычисления годовой процентной ставки и срока.

Задача №4

В некоторый момент времени инвестируется сумма в размере $1000. Спустя 45 дней инвестор получает $1010. Найти годовую процентную ставку, соответствующую обычным простым процентам.

Решение:

В нашем случае

Задачи по финансовой математики

S — Р

Согласно формуле (1.7) Задачи по финансовой математики

Ответ: Годовая процентная ставка 8%.

Задача №5

На сколько дней нужно положить $6, чтобы при инвестировании при 5% обычной простой процентной ставке получить $900.

Решение:

Пусть Задачи по финансовой математики — число дней, которое нам нужно найти. Тогда с одной стороны

Задачи по финансовой математики

С другой стороны, из (1.8)

Задачи по финансовой математики

Отсюда следует, что

Задачи по финансовой математики

Подставляя данные нашей задачи, получим Задачи по финансовой математики= 1072800.

Ответ: На 1072800 дней.

В общем виде, формула (1.5) записывается следующим образом:

Задачи по финансовой математики

где

Задачи по финансовой математики — основная сумма инвестиций,

Задачи по финансовой математики — накопленная сумма исходной суммы Задачи по финансовой математики,

Задачи по финансовой математики — процентная ставка за период,

Задачи по финансовой математики — срок в периодах.

Возможно эта страница вам будет полезна:

Решение задач по финансовой математике

Задача №6

Найти накопленную сумму, если инвестор вложил $500 на 6 месяцев при месячной процентной ставке 10%.

Решение:

В данном случае период — месяц. Значит

Задачи по финансовой математики

Ответ: Накопленное значение $800.

Рассмотренные выше методы финансовых вычислений используются в условиях, когда процентные ставки постоянны. Между тем, в заключаемых сделках (особенно в условиях инфляции) используются дискретно меняющиеся во времени процентные ставки. А именно: за период Задачи по финансовой математики берется ставка Задачи по финансовой математики. В таких ситуациях накопленная сумма денег определяется по формуле

Задачи по финансовой математики

где

Задачи по финансовой математики — ставка простых процентов за период,

Задачи по финансовой математики — продолжительность срока исчисления данной ставки в периодах,

Задачи по финансовой математики — число периодов в течение которых ставка постоянна.

Такой порядок, используемый коммерческими банками, позволяет учесть изменения в конъюнктуре рынка и, в частности, компенсировать в определенной мере инфляцию.

Задача №7

Соглашение промышленного предприятия с байком предусматривает, что за первый год предприятие уплачивает 20% годовых. В каждом последующем полугодии ставка повышается на 1 процентный пункт, т.е. на 1%. Срок сделки 2,5 года. Сумма кредита 5 млн. руб. Проценты обычные. Определить сумму возврата долга через 2,5 года и доход банка.

Решение:

По условию задачи имеем:

Задачи по финансовой математики
Задачи по финансовой математики

При этих условиях формула (1.10) запишется в виде

Задачи по финансовой математики

Доход банка равен

Задачи по финансовой математики

Ответ: Сумма возврата — 6,75 млн. руб., доход равен 1,75 млн. руб.

Усложним ситуацию. За первый год предприятие уплачивает проценты в следующем порядке: первое полугодие — 20%, второе -ставка увеличивается на среднюю полугодовую иидексационную надбавку, исходя из индекса инфляции за второе полугодие. За оставшиеся полтора года ставка возрастает за каждый квартал на 6 пунктов к ставке второго полугодия.

Определим ставку второго полугодия. Для этого будем использовать индексы инфляции. По Закону РФ они публикуются ежеквартально. Пусть иидексационные надбавки, принятые банком с учетом индексов инфляции, составили за 3 квартал 46%, за 4 квартал 54%. Средняя индексационная надбавка за второе полугодие равняется 50%.

На практике квартальная индексационная надбавка может определяться как средняя из месячных индексационных надбавок. В результате имеем следующие процентные ставки, «привязанные» к инфляции:

За первый год ссуды:

1 полугодие -20%

2 полугодие — 70% (20+50)

За второй год ссуды:

1 квартал — 76% (70+6)

2 квартал — 82% (76+6)

3 квартал — 88% (82+6)

4 квартал — 94% (88+8)

За третий год ссуды:

1 квартал — 100% (94+6)

2 квартал — 106% (100+6)

Реинвестирование процентных денег

К оглавлению…

Особенностью финансовых вычислений по простым процентам является то, что ставка начисляется только с исходной величины ссуды или депозита. В условиях рынка с целью повышения заинтересованности клиентов и привлечения дополнительных денежных средств банки используют реинвестирование, т.е. после начисления процентов присоединяют сумму к исходной величине и далее вновь начисляют проценты. В таких сделках накопленное значение

Задачи по финансовой математики

где Задачи по финансовой математики — продолжительности периодов наращения денег. к

При этом Задачи по финансовой математики — общий срок сделки, Задачи по финансовой математики — ставки, по которым производится реинвестирование. Если периоды начисления и ставки процентов равны, то (1.11) принимает вид:

Задачи по финансовой математики

где

Задачи по финансовой математики — число операций реинвестирования.

Возможно эта страница вам будет полезна:

Примеры решения задач по финансовой математике

Задача №8

На сумму $100000 начисляется 10% годовых. Проценты простые точные. Какова накопленная сумма, если операция реинвестирования проводится ежемесячно в течение первого квартала?

Решение:

По формуле (1.11)

Задачи по финансовой математики

Ответ: Накопленная сумма $102486.

Если бы операция реинвестирования ие проводилась, и проценты начислялись бы за 1 квартал ежемесячно, то

Задачи по финансовой математики

Получили меньшую сумму, чем при реинвестировании. Вывод: операция реинвестирования всегда выгодна вкладчику.

Срок между датами при описании кредитных операций

К оглавлению…

Часто при описании кредитных операций задается их срок, на который предоставляется заем, а дата взятия кредита и дата его погашения. В этом случае для определения срока займа используют специальные таблицы (см. Приложение). Покажем на примере, как это делается.

Задача №9

Дата взятия кредита 15 июня, погашения 20 октября того же года. Найти срок погашения. Год ие високосный.

Решение:

Согласно таблице П1. 15 июня — 166 день в году, а 20 октября — 293 день. Тогда срок погашения

293 — 166 = 127.

Ответ: Точный срок 127 дней.

Мы нашли точный срок погашения.

Существует еще один метод определения срока погашения -приближенный. Покажем, как его находить на примере 1.9. Составим таблицу:

Задачи по финансовой математики

Разница между этими датами 4 месяца и 5 дней. Считая, что в любом месяце 30 дней, вычисляем приближенный срок между нашими датами

30*4 + 5 = 125.

Ответ: Приближенный срок 125 дней.

Задача №10

Заем сделан 16 ноября 1965 г. и возвращен 9 февраля 1966 г. Найти точный и приближенный сроки.

Решение:

Согласно таблице П1, 16 ноября — 320-й день, а 9 февраля — 40-й день. В промежутке между этими датами в 1965 году было

365 -320 = 45 и 40 дней было в 1966 году. Точный срок

40 + 45 = 85.

Для определения приближенного срока составляем таблицу

Задачи по финансовой математики

В году 12 месяцев и значит 1966 = 1965 + 12 мес.; в месяце 30 дней, т.е. 14 месяцев — это 13 месяцев + 30 дней. Итого -приближенный срок равен 2 месяцем и 23 дням.Полагая, что в любом месяце 30 дней, получаем, что приближенный срок равен 2-30 + 23 = 83.

Ответ: Точный срок 85 дней, приближенный срок — 83 дня.

Обобщая полученные методы, заключаем, что для вычисления накопленного значения можно использовать:

  1. Точный срок и обычные простые проценты.
  2. Точный срок и точные простые проценты.
  3. Приближенный срок и точные простые проценты.
  4. Приближенный срок и обычные простые проценты. Первое правило называется банковским.

Простой дисконт

К оглавлению…

Дисконтом называется скидка с цены товара при различных сделках. Пусть владелец векселя на 100 тыс. руб. и сроком погашения 6 месяцев, спустя 2 месяца с момента получения векселя, продает его за 95 тыс. руб. Тогда дисконт составит

100-95 = 5.

или 5% от стоимости векселя. В этом случае говорят, что учетная ставка за 4 месяца (6-2 = 4) составляет 5%.

Введем обозначения: Задачи по финансовой математики — поминальная (учетная) стоимость, Задачи по финансовой математики — сумма долга при погашении, где Задачи по финансовой математики — срок оставшийся до погашения долга. Тогда величина

Задачи по финансовой математики

есть дисконт.

Отношение разницы между полной и выкупной ценами векселя к его полной стоимости, т.е. дисконта к полной стоимости

Задачи по финансовой математики

называется учетной ставкой за период Задачи по финансовой математики.

Еще раз подчеркнем, что величины Задачи по финансовой математики зависят от длительности периода оставшегося до погашения.

Из определения учетной ставки следует, что

Задачи по финансовой математики

В банках обычно указывают учетную ставку за год. Она называется годовой учетной ставкой. Существует связь между годовой учетной ставкой и ставкой за период

Задачи по финансовой математики

где

Задачи по финансовой математики— учетная ставка за период Задачи по финансовой математики,

Задачи по финансовой математики — годовая учетная ставка,

Задачи по финансовой математики — остаток срока до погашения в годах.

С учетом этой формулы из (1.13) получаем

Задачи по финансовой математики

Величина Задачи по финансовой математики называется простым или банковским дисконтом, а выражение

Задачи по финансовой математики

называется дисконтным множителем за период Задачи по финансовой математики по учетной ставке Задачи по финансовой математики.

Возможно эта страница вам будет полезна:

Курсовая работа по финансовой математике

Задача №11

Владелец векселя, номинальная стоимость которого равна 220 тыс. руб., а срок погашения — год, обратился в байк, когда до срока погашения векселя осталось 270 дней с просьбой о его учете. Банк согласился на учет векселя по ставке 21,05% годовых. Найти размер дисконта.

Решение:

По условию Задачи по финансовой математики В этом случае владелец векселя получит сумму

Задачи по финансовой математики

Отсюда получаем, что дисконт в нашем примере

Задачи по финансовой математики

Ответ: Банк получил дисконт в размере 29997 руб.

Задача №12

Владелец векселя с номиналом 100 тыс. руб. и периодом обращения 105 дней за 15 дней до наступления срока платежа учитывает его в банке по учетной ставке 20% годовых. Найти величину дисконта.

Решение:

По условию задачи имеем:

Задачи по финансовой математики

Согласно (1.14) сумма, полученная владельцем векселя, составит

Задачи по финансовой математики

Величина дисконта, полученного банком, равна

100-99,166 = 0,834.

Ответ: Дисконт равен 834 руб.

Учетные ставки широко используются в различных финансовых сделках. Однако дисконтирование по годовой процентной ставке Задачи по финансовой математики и годовой учетной ставке Задачи по финансовой математики приводит к различным финансовым результатам. Например, если по данным предыдущего примера произвести дисконтирование с использованием процентной ставки Задачи по финансовой математики, то величина дисконта составит

Задачи по финансовой математики
Задачи по финансовой математики

То есть при банковском дисконтировании владелец векселя получит меньшую сумму, чем при использовании математического дисконтирования.

Бывает ситуация, когда совмещается начисление процентов по ставке z и дисконтирование по ставке Задачи по финансовой математики. В этом случае наращенная величина ссуды будет определяться по формуле:

Задачи по финансовой математики

где Р — первоначальная сумма ссуды, Задачи по финансовой математики — общий срок платежного обязательства, Задачи по финансовой математики — срок от момента учета обязательства до даты погашения долга, Задачи по финансовой математики — сумма, полученная при учете обязательства.

Задача №13

Долговое обязательство, предусматривающее уплату 400 тыс. руб. с начисленными на них 120% годовых, подлежит погашению через 90 дней. Владелец обязательства учел его в банке за 15 дней до наступления срока по учетной ставке 135% годовых. Найти дисконт.

Решение:

По условию задачи

Задачи по финансовой математики

С учетом (1.15)

Задачи по финансовой математики

Ответ: Дисконт равен 29,06 тыс. руб.

Задача №14

Банк выдал фирме кредит сроком на полгода в размере $10000 под 80% годовых. Проценты простые обычные. Если возврат долга просрочен более чем на 30 дней, то процентная ставка возрастает на 5 пунктов и взимается по фактическому сроку неплатежей. 7 января банк списал со своего счета S10000 и направил в соответствии с договором на счет фирмы. 7 июля на счет банка поступила сумма $12000. Найти долг фирмы байку на 16 августа.

Решение:

Найдем сумму возврата долга по договору (в тыс. долл.)

Задачи по финансовой математики

Доход банка равен $4000. Сумма недоплаты долга на конец сделки, т.е. 7 июля равна (в тыс. долл.)

14-12 = 2.

Сумма невозвращенного долга в течение 30 дней, т.е. 7 августа составила $2000. На нее начисляются уже проценты по ставке 80 + 5% = 85% годовых. На 7 августа сумма долга составила (в тыс. дол.)

Задачи по финансовой математики

Сумма не возвращенного долга с 7 августа по 16 августа (9 дней) составила $2000. На эту сумму начисляются 90% годовых

Задачи по финансовой математики

Отсюда получаем, что общая сумма долга (в тыс. долл.)

2,141667 + 0,045 = 2,186667.

Ответ: Долг фирмы $2186,667.

Сложные проценты. Формула сложных процентов

К оглавлению…

Основной суммой мы будем называть величину инвестированного под проценты капитала. Пусть срок инвестирования задан в периодах, например, 1 период — 1 год. Пусть также дана процентная ставка за период, например, годовая процентная ставка. Если проценты в конце каждого периода (года) инвестиционного срока прибавляются к основной сумме, и полученная сумма является исходной для начисления процентов в следующем периоде (году), то начисленные к концу срока проценты называются сложными.

Наращенной суммой по ставке сложных процентов будем называть величину основной суммы капитала плюс сложные проценты.

Задача №15

Сумма в размере $200 положена на банковский счет на 3 месяца по ставке 10% в месяц. Найти наращенную сумму в конце каждого месяца.

а) по ставке простых процентов,

б) по ставке сложных процентов.

Решение:

а) Проценты за один месяц составят 200 • 0,1 • 1 = 20. Наращенная сумма в конце первого месяца будет равна

200 + 20 = 220; в конце второго месяца будет равна

200 + 20 + 20 = 240; в конце третьего месяца будет равна

200 + 20 + 20 +20 = 260.

б) Проценты за первый месяц

200 • 0,1 • 1 = 20;

наращенная сумма в конце первого месяца

200 + 20 = 220;

проценты за второй месяц

220 • 0,1 • 1 =22;

наращенная сумма в конце второго месяца

220 + 22 = 242;

проценты за третий месяц

242-0,1-1 =24,2;

Наращенная сумма в конце третьего месяца

242 + 24,2 = 266,2.

Ответ: а) $220, $240, $260; б) $220, $242, $266,2.

Заметим, что при фиксированной процентной ставке инвестирование на один период, соответствующей процентной ставке по сложным и простым процентам, приводит к одному и тому же наращенному значению.

В общем случае справедлива формула сложных процентов:

Задачи по финансовой математики

где

Задачи по финансовой математики — наращенная по сложным процентам сумма,

Задачи по финансовой математики — основной капитал,

Задачи по финансовой математики — процентная ставка за период,

Задачи по финансовой математики — срок в периодах.

Возможно эта страница вам будет полезна:

Контрольная работа по финансовой математике

Задача №16

Сумма в размере $127 инвестирована под 125% годовых на 2 года. Вычислить сложные проценты, начисленные к концу срока.

Решение:

По формуле сложных процентов наращенная сумма

Задачи по финансовой математики

Сложные проценты

Задачи по финансовой математики

Ответ: Сложные проценты — $515,94.

Задача №17

Кредит в размере 300 тыс. руб. выдан под сложные проценты по ставке 2% в месяц на 2 года. Найти полную сумму долга к концу срока.

Решение:

Процентная ставка месячная, значит необходимо найти срок в месяцах. В году 12 месяцев. Значит полный срок в месяцах

2 * 12 = 24.

По формуле сложных процентов получаем

Задачи по финансовой математики

Ответ: Полная сумма долга 5482,53.

Номинальная и эффективная процентные ставки

К оглавлению…

Пусть задана годовая процентная ставка и проценты начисляются чаще чем раз в год. Например, по полугодиям, кварталам, месяцам и т.д. В этом случае годовая ставка называется номинальной, а процентная ставка за один период начисления считается равной отношению номинальной ставки к числу периодов начисления в году Задачи по финансовой математики, где

Задачи по финансовой математики — номинальная процентная ставка,

Задачи по финансовой математики — число периодов начисления в году.

Если начисления происходят раз в полгода, то Задачи по финансовой математики.

Если начисления происходят раз в квартал, то Задачи по финансовой математики.

Если начисления происходят ежемесячно, то Задачи по финансовой математики.

Наращенная сумма при заданной номинальной процентной ставке вычисляется по формуле

Задачи по финансовой математики

где Задачи по финансовой математики — основная сумма,

Задачи по финансовой математики — номинальная процентная ставка,

Задачи по финансовой математики — число периодов начисления в году,

Задачи по финансовой математики — срок в годах.

Возможно эта страница вам будет полезна:

Заказать работу по финансовой математике

Задача №18

Найти наращенную сумму, если $300 инвестированы на два года по номинальной ставке 12% годовых, при начислении процентов

а) по кварталам,

б) по месяцам.

Решение:

В случае а) с учетом, что в году 4 квартала получаем

Задачи по финансовой математики

В случае б) с учетом, что в году 12 месяцев получаем

Задачи по финансовой математики

Ответ: наращенная сумма — а) $380,03; б) $380,92.

На практике наращение денег может производиться 1 раз в год по ставке Задачи по финансовой математики или Задачи по финансовой математики раз в год по ставке Задачи по финансовой математики. Годовая ставка Задачи по финансовой математики, при которой наращенное значение при начислении процентов по ставке Задачи по финансовой математики, не будет отличаться от наращенного значения при начислении процентов Задачи по финансовой математики раз в году по ставке j/m, называется эффективной или действительной ставкой. Эффективная ставка характеризует тот реальный относительный доход, который получает кредитор за год при начислении процентов Задачи по финансовой математики раз в год по ставке Задачи по финансовой математики.

Эффективная и номинальная ставки связаны следующим соотношением:

Задачи по финансовой математики

где

Задачи по финансовой математики — эффективная годовая ставка,

Задачи по финансовой математики — номинальная процентная ставка,

Задачи по финансовой математики — число начислений процентов за год.

Задача №19

Дана эффективная годовая процентная ставка 30%. Найти эквивалентную ей номинальную ставку при начислении процентов раз в полгода.

Решение:

По условию задачи имеем Задачи по финансовой математики. Из формулы (2.3) можно найти Задачи по финансовой математики:

Задачи по финансовой математики

Тогда подставляя данные задачи, получаем:

Задачи по финансовой математики

Ответ: Номинальная ставка — 28%.

2.3. Проценты за дробное число лет

В различных сделках срок не всегда есть целое число лет, он может быть равен и дробному числу лет. Пусть

Задачи по финансовой математики

где

Задачи по финансовой математики — период сделки в годах,

Задачи по финансовой математики — целая часть Задачи по финансовой математики,

Задачи по финансовой математики — дробная часть Задачи по финансовой математики.

В таких случаях проценты могут начисляться двумя способами:

по формуле сложных процентов

Задачи по финансовой математики

на основе смешанного метода

Задачи по финансовой математики

Заметим, что если общий срок менее года, наращенная сумма вычисляемая по смешанному методу больше, чем наращенная сумма вычисляемая по формуле сложных процентов, т. к.

Задачи по финансовой математики

Задача №20

Клиент банка вносит депозит $3000 на 3,5 года под 40% годовых. Определить величину депозита в конце периода используя два приведенных выше метода.

Решение:

По формуле сложных процентов

Задачи по финансовой математики

На основе смешанного метода

Задачи по финансовой математики

Ответ: $9740 и $9878,4.

Задача №21

Размер депозита 10 млн. руб. Номинальная годовая ставка 50%. Проценты начисляются по полугодиям. Найти наращенную сумму по смешанному методу, если срок депозита 27 месяцев.

Решение:

Используя смешанный метод, находим:

Задачи по финансовой математики

Ответ: Наращенная сумма 25939941 руб.

Дисконтирование (учет) по сложной ставке процентов

К оглавлению…

Рассмотрим применение математического дисконтирования по ставке сложных процентов. Дадим сначала определение дисконтного множителя.

Величину Задачи по финансовой математики

называют учетным или дисконтным множителем по ставке сложных процентов Задачи по финансовой математики за период Задачи по финансовой математики. Тогда формулу (2.1) можно переписать в виде

Задачи по финансовой математики

Если проценты начисляются Задачи по финансовой математики раз в году, то величина Р вычисляется по формуле

Задачи по финансовой математики

где

Задачи по финансовой математики — годовая номинальная ставка процентов,

Задачи по финансовой математики — срок ссуды в годах.

Дисконтный множитель в этом случае есть Задачи по финансовой математики

Разность между S и Р называется дисконтом по сложной ставке процентов, и определяется по формуле

Задачи по финансовой математики

Задача №22

Какую сумму Р должен положить в банк, чтобы через 10 лет получить 2 млн. руб? Банк производит начисление процентов ежеквартально по сложной ставке 20% годовых.

Решение:

Если бы начисления производились ежегодно, то учитывая (2.4), получили бы

Задачи по финансовой математики

Но начисление процентов производится ежеквартально, и значит первоначальная сумма вклада значительно меньше. Согласно (2.5) имеем:

Задачи по финансовой математики

Ответ: Р = 284091 руб.

Являясь одной из основных характеристик в финансовом анализе, величина Р обладает следующими свойствами:

1. Чем выше ставка процентов, тем более интенсивно происходит дисконтирование и, как следствие, в большей степени уменьшается первоначальная величина Р при прочих равных условиях.

2. С увеличением срока платежа современная величина будет становиться все меньше.

3. С ростом величины Задачи по финансовой математики (сколько раз в году начисляются проценты) дисконтный множитель уменьшается, следовательно, уменьшается и современная величина.

Если Задачи по финансовой математики — соответственно простая и сложная ставки., то в случае равенства Задачи по финансовой математики, для срока менее года Задачи по финансовой математики имеем Задачи по финансовой математики, т.е. дисконтный множитель по ставке простых процентов меньше, чем по ставке сложных процентов.

Для срока более года Задачи по финансовой математики

Задачи по финансовой математики

т.е. дисконтный множитель по ставке простых процентов больше, чем по ставке сложных процентов.

Сложная учетная ставка

К оглавлению…

В учетных операциях наряду с использованием простых и сложных процентных ставок используются также сложные годовые учетные ставки.

Для дисконтирования по сложной учетной ставке используется формула

Задачи по финансовой математики

где

Задачи по финансовой математики — сложная годовая учетная ставка,

Задачи по финансовой математики — срок, оставшийся до наступления платежа по долговому обязательству.

Отсюда следует, что Задачи по финансовой математики. В этом случае дисконт по сложной учетной ставке определяется по формуле

Задачи по финансовой математики

Задача №23

Владелец векселя номиналом в 200 тыс. руб. с периодом обращения 1,5 года предложил его банку для учета. Банк произвел учет векселя по сложной учетной ставке (по ставке простых процентов), равной 12% годовых. Определить дисконт, полученный банком и сумму, полученную владельцем векселя.

Решение:

Для ставки сложных процентов согласно (2.6) и (2.7) имеем:

Задачи по финансовой математики

Для ставки простых процентов

Задачи по финансовой математики

Ответ: Для ставки сложных процентов — дисконт -34,898тыс. руб., сумма полученная владельцем — 165,102 тыс. руб.

Для ставки простых процентов — 36 тыс. руб. и 164 тыс. руб. соответственно.

Таким образом, дисконтирование по сложной учетной ставке для владельца векселя выгоднее, чем по простой учетной ставке.

Уравнение эквивалентности. Временное значение денег

К оглавлению…

С экономической точки зрения бессмысленно говорить о величине денежной суммы без указания даты ее рассмотрения. $1000 сегодня и через год это две разные суммы, т.к. если бы Вы положили эту сумму в байк под 20% годовых, то через год получили бы сумму в размере $1000 + 20% от $1000, т.е. сумму большую чем $1000. Таким образом, у Вас есть две возможности: либо получить $1000 сегодня, либо $1000 плюс проценты на эту сумму за год через год. Из приведенного примера видно, что чем больше годовая процентная ставка, тем больше проценты за год и, значит, больше сумма, которую Вы через год получите.

Итак, мы имели две одинаковые суммы ($1000) в разные моменты времени (сегодня и через год), затем привели эти суммы к одному моменту (через год) и сравнили их. Обнаружилось, что стоимости одной и той же суммы в разные моменты времени будут отличные друг от друга величины.

Для сравнения денежных сумм, относящихся к разным моментам времени, необходимо фиксировать процентную ставку. Фиксируя ее, мы можем сравнивать любые две денежные суммы, относящиеся к разным моментам времени. Введем следующее определение эквивалентности двух денежных сумм.

Пусть задан некоторый срок, состоящий из н периодов. Рассмотрим денежную сумму Р, относящуюся к началу заданного срока, и денежную сумму 5 относящуюся к концу этого срока.

Задачи по финансовой математики

Тогда говорят, что денежная сумма Р эквивалентна денежной сумме Задачи по финансовой математики по ставке сложных процентов z за период, если выполнено равенство

Задачи по финансовой математики

где Задачи по финансовой математики — фиксированная ставка сложных процентов за один период, Задачи по финансовой математики — срок между моментами рассмотрения данных сумм измеряемый в периодах.

Обратим Ваше внимание, что понятие эквивалентности для денежных сумм, рассматриваемых в разные моменты времени, вводится только для ставки сложных процентов.

Свойство эквивалентности денежных сумм

Пусть А, В, С — денежные суммы, относящиеся к разным моментам времени.

При фиксированной ставке сложных процентов из эквивалентности сумм А и В и эквивалентности сумм В и С по ставке сложных процентов i следует эквивалентность сумм А и С по этой же ставке сложных процентов.

Задача №24

Эквивалентна ли сумма в размере 10000 руб. сегодня сумме 20000 руб. через два года, если годовая процентная ставка 20%?

Решение:

По условию задачи Задачи по финансовой математики, Задачи по финансовой математики. Найдем эквивалентное значение для Р через два года по ставке сложных процентов 0,2.

Задачи по финансовой математики

Получили величину, не совпадающую с S, т.е. условие эквивалентности не выполнено и, значит, эти суммы не эквивалентны по ставке сложных процентов 20%.

Ответ: Суммы не эквивалентны.

Задача №25

Рассмотрим сумму $1000 сегодня (в момент времени 0). В какой момент времени эта сумма будет эквивалентна $1010 по ставке 1% годовых?

Решение:

По условию задачи период для срока — год (так как. ставка годовая). Значит полученный ответ тоже будет измеряться в годах. Запишем данные нашей задачи

Задачи по финансовой математики

Подставим их в уравнение эквивалентности

Задачи по финансовой математики

Ответ: Через год (в момент времени 1) эти суммы будут эквивалентны.

Рассмотрим теперь другой пример.

Задача №26

Пусть долг в размере $100 Вы должны отдать через 2 года. Через год у Вас появились денежные средства, и Вы хотите вернуть долг раньше на 1 год. Какую сумму Вы должны отдать, если проценты начисляются по ставке сложных процентов 20% годовых.

Решение:

По условию задачи имеем:

Задачи по финансовой математики

Итак, нам необходимо найти эквивалентное значение для суммы $100 в момент времени 1 при ставке сложных процентов 0, 2. По условию Р эквивалентна S, если Задачи по финансовой математики; отсюда находим

Задачи по финансовой математики

Ответ: $83,333.

Сравнение двух денежных сумм относящихся к разным моментам времени

К оглавлению…

Для того чтобы сравнить две суммы, относящиеся к разным моментам времени, необходимо зафиксировать произвольный момент времени, вычислить эквивалентное значение для каждой суммы в этот момент времени и сравнить полученные значения.

Для нахождения эквивалентного значения в некоторый фиксированный момент времени t0 для двух сумм, относящихся к двум разным моментам времени (потока платежей, состоящего из двух денежных сумм), необходимо найти эквивалентные суммы для каждой из этих сумм в момент времени t0, а затем полученные результаты сложить.

Задача №27

Некоторой компании Вы должны будете выплатить $100 через год и $200 через три года. Сколько вы должны заплатить сегодня Компании, если Вы хотите выплатить весь свой долг полностью. Годовая процентная ставка по которой начисляются проценты 30%.

Решение:

Мы имеем две денежные суммы в разные моменты времени 1 и 3.

Задачи по финансовой математики

По правилу, описанному выше, мы должны заменить эти две суммы на одну эквивалентную сумму в моменты времени 0. Каждую сумму долга — Задачи по финансовой математики (индекс показывает к какому моменту относится сумма) — мы заменяем на эквивалентные суммы Задачи по финансовой математики в момент времени 0.

Задачи по финансовой математики

(Между 0-м и 1-м моментами срок — период, т.е. 1 год. Между 0-м и 3-м срок — 3 периода, т.е. 3 года). Складывая, получаем сумму долга иа 0-й момент времени: Задачи по финансовой математики

Ответ: $167, 95.

Задача №28

Дан поток платежей см. рисунок ниже и ставка сложных процентов 20% годовых.

Задачи по финансовой математики

Найти эквивалентные значения для этого потока платежей в моменты времени 0, 2, 3.

Решение:

Эквивалентное значение в момент времени 0

Задачи по финансовой математики

В момент времени 2

Задачи по финансовой математики

В момент времени 3

Задачи по финансовой математики

Ответ: Задачи по финансовой математики.

Пусть имеется поток платежей, состоящий из Задачи по финансовой математики выплат с интервалом один год. Временная шкала приведенного потока платежей имеет единицу измерения — год. Тогда произвольный поток платежей, состоящий из Задачи по финансовой математики выплаты с интервалом один год можно изобразить следующим образом

Задачи по финансовой математики

Задачи по финансовой математики — величина выплаты в момент времени Задачи по финансовой математики. И пусть фиксированы годовая процентная ставка Задачи по финансовой математики и некоторый момент времени Задачи по финансовой математики. Тогда эквивалентным значение по ставке Задачи по финансовой математики в момент Задачи по финансовой математики для заданного потока платежей является величина Задачи по финансовой математики, равная

Задачи по финансовой математики

Покажем на примере как пользоваться этой формулой.

Задача №29

Дан поток платежей см. рисунок ниже и ставка сложных процентов 40% годовых.

Задачи по финансовой математики

Найти эквивалентные значения для этого потока платежей в моменты времени 1,4, 5.

Решение:

По условию задачи имеем

Задачи по финансовой математики

Рассмотрим момент времени 1 (Задачи по финансовой математики = 1). В этом случае формула (*) принимает вид

Задачи по финансовой математики

2. Рассмотрим момент времени 4 (Задачи по финансовой математики = 4 ). В этом случае имеем

Задачи по финансовой математики

Рассмотрим момент времени 5 (Задачи по финансовой математики = 5), тогда

Задачи по финансовой математики

Ответ: Задачи по финансовой математики

Потоки платежей. Понятие текущего и наращенного значений потока платежей

К оглавлению…

Пусть имеется поток платежей, состоящий из Задачи по финансовой математики выплаты с интервалом один год.

Временная шкала приведенного потока платежей имеет единицу измерения — год. Тогда произвольный поток платежей, состоящий из Задачи по финансовой математики выплаты с интервалом один год можно изобразить следующим образом

Задачи по финансовой математики

где Задачи по финансовой математики — величина выплаты в момент времени Задачи по финансовой математики

Пусть фиксированы годовая процентная ставка Задачи по финансовой математики и некоторый момент времени Задачи по финансовой математики. Тогда эквивалентным значение по ставке Задачи по финансовой математики в момент Задачи по финансовой математики для заданного потока платежей является величина Задачи по финансовой математики равная

Задачи по финансовой математики

Напомним, что Задачи по финансовой математики — годовая процентная ставка сложных процентов.

Значение Задачи по финансовой математики называется текущим значением потока платежей по ставке сложных процентов Задачи по финансовой математики, а значение Задачи по финансовой математики — наращенным значением потока платежей на момент времени n по ставке сложных процентов Задачи по финансовой математики.

Задача №30

Найти текущее и наращенное потока платежей, если Задачи по финансовой математики. Годовая процентная ставка 25%. Срок между выплатами последовательных платежей — год. Срок платежей Задачи по финансовой математики.

Решение:

Текущее значение по ставке сложных процентов Задачи по финансовой математики

Задачи по финансовой математики

Наращенное значение по ставке сложных процентов Задачи по финансовой математики

Задачи по финансовой математики

Ответ: Текущее значение — 182,4; наращенное значение — 445,31.

Кстати тут готовые задачи на продажу, может подберёте для себя там чтонить.

Ренты. Текущее и наращенное значения ренты

К оглавлению…

Рассмотрим поток платежей, состоящий из Задачи по финансовой математики выплаты с интервалом один год.

Если Задачи по финансовой математики для любого Задачи по финансовой математики, то такой поток платежей называется обычной рентой. А значит текущее значение обычной ренты

Задачи по финансовой математики

а наращенное значение обычной ренты

Задачи по финансовой математики

Если Задачи по финансовой математики для любого Задачи по финансовой математики, то такой поток платежей называется приведенной рентой. Текущее значение приведенной ренты

Задачи по финансовой математики

а наращенное значение приведенной ренты

Задачи по финансовой математики

Значение Задачи по финансовой математики задает срок ренты и измеряется в годах.

Задача №31

Найти текущее и наращенное значение обычной ренты, если Задачи по финансовой математики Годовая процентная ставка 20%. Срок ренты 10 лет.

Решение:

Текущее значение

Задачи по финансовой математики

Наращенное значение

Задачи по финансовой математики

Ответ: Текущее значение — 419,247, наращенное значение -2595,86

Задача №32

Найти текущее и наращенное значение приведенной ренты, если Задачи по финансовой математики. Годовая процентная ставка 30%. Срок ренты 5 лет.

Решение:

Текущее значение

Задачи по финансовой математики

Наращенное значение

Задачи по финансовой математики

Ответ: Текущее значение — 633,248;

наращенное значение — 2351,206.