Задачи по эконометрике

Готовые задачи по эконометрике, надеюсь они вам помогут.

Если что-то непонятно вы всегда можете написать мне в воцап и я вам помогу!

Эконометрические модели парной регрессии

К оглавлению…

Эконометрика является одной из важнейших составляющих современного экономического образования. Применение эконометрических методов является необходимым условием проведения качественных экономических исследований.

Современную эконометрику можно разделить на два направления: теоретическую и прикладную.

Теоретическая эконометрика занимается изучением специальных вероятностных (т.н. регрессионных) моделей, используя при этом аппарат теории вероятностей и математической статистики.

В основе прикладной эконометрики лежит применение вероятностных моделей для количественного описания и анализа экономических явлений и процессов.

Между этими направления существует глубокая двусторонняя взаимосвязь. Основные результаты теоретической эконометрики в виде статистических тестов и новых классов вероятностных моделей находят свое применение при решении прикладных задач. С другой стороны, в прикладной эконометрике в процессе исследования экономических явлений возникают ситуации или наблюдаются эффекты, которые не описываются существующими моделями. Это является предпосылкой для дальнейшего развития теоретического аппарата.

Термин «эконометрика» дословно читается как «измерения в экономике». Однако не каждое измерение в экономике относится к эконометрике, поэтому дадим точное определение.

Эконометрика (или эконометрия) изучает методы оценивания параметров моделей, характеризующих количественную взаимосвязь между экономическими показателями, а также рассматривает основные направления применения этих моделей в экономических исследованиях.

Предметом изучения эконометрики являются социально-экономические системы, процессы или явления, описываемые моделями. Методы исследования — математические методы, базирующиеся на теории вероятностей и математической статистике (далее ТВиМС), и других разделах математики. Структурно эконометрические исследования приведены на рис. 1.1.

Построение эконометрической модели условно делят на четыре этапа:

  1. спецификация модели, т.е. её запись в математической форме;
  2. сбор и подготовка экономической информации;
  3. оценивание параметров модели;
  4. проверка модели на достоверность.

Этапы 1) и 2) взаимозаменяемы. Полученную модель применяют для прогнозирования, планирования и с другими целями.

Термин «эконометрика» был введен в научный оборот в начале 20-го века. В 1928 г. была опубликована работа Ч. Кобба и П. Дугласа, посвященная исследованию производственной функции, связывающей объём выпуска продукции в отрасли, затраты труда и затраты капитала. Модель производственной функции Кобба-Дугласа является, пожалуй, первым примером использования эконометрики и отражает классический подход к эконометрическому анализу.

Окончательное становление эконометрики относят к 1930 году, когда европейскими и американскими учёными было основано «Эконометриче-ское сообщество». С 1933 г. выходит журнал «Эконометрия», издающийся этим сообществом.

Возможно эта страница вам будет полезна:

Предмет эконометрика

Основателями эконометрии считаются Р. Фриш, Я. Тинберген, И. Шумпетер, Л. Клейн, Р. Стоун и другие учёные. Их целью было объединение экономической теории с математическими и статистическими методами. Модели, предложенные этими учеными, способствовали развитию математического и статистического аппарата и расширению области применения эконометрики.

После Второй мировой войны были построены комплексные эконо-метрические модели на макроуровне, в которых основное внимание уделялось спросу, финансовому состоянию, налогам, прибылям, ценам и другим важнейшим экономическим показателям.

Наиболее используемыми в эконометрии являются: производственные функции; функции потребления различных групп населения; функции предпочтения потребителей; межотраслевые модели производства, распределения и потребления продукции; модели экономического равновесия.

Помимо экономических исследований, эконометрические методы успешно применяются в биологии, истории, социологии и некоторых других общественных и естественных науках, где необходимо оценивать взаимосвязи между большим количеством переменных.

Важность данной науки подчеркивает тот факт, что за эконометрические исследования многократно присуждалась Нобелевская премия в области экономики.

В настоящее время эконометрия продолжает динамично развиваться и охватывает всё новые сферы экономических знаний.

Особенности эконометрических моделей

К оглавлению…

Математическая модель социально-экономической системы, процесса или явления представляет собой абстрактную запись основных его закономерностей с помощью математических формул и соотношений. Эконометрические модели относятся к функциональным стохастическим моделям. Они количественно описывают корреляционно-регрессионную связь между исследуемыми показателями.

Эконометрическая модель содержит три группы элементов: вектор — неизвестные характеристики объекта, которые необходимо определить; вектор — характеристики внешних по отношению к объекту условий, которые, изменяясь, влияют на изучаемые параметры; матрица — совокупность внутренних параметров объекта.

В данном случае и являются экзогенными параметрами (т.е., параметрами, которые определяются вне модели), a — эндогенный параметр, значения которого определяются из модели.

В общем виде эконометрическую модель можно записать в виде:

Здесь — входные экономические показатели, — случайная (стохастическая) составляющая, которые посредством функции регрессии влияют на .

Для построения эконометрической модели необходимо выполнение следующих условий:

наличие достаточно большой совокупности наблюдений;

  • однородность совокупности наблюдений;
  • точность входных данных.

В отношении оценивания степени однородности совокупности наблюдений существует много различных подходов. Впрочем, все исследователи согласны с тем, что экономические наблюдения, как правило, неоднородны. Поэтому речь может идти лишь о достижении определенной степени однородности, которая обеспечит достоверность экономических выводов.

Различают качественную и количественную однородность. Под первой подразумевается однотипность экономических объектов, их одинаковое качество и определенное назначение. Под второй — однородность группы единиц совокупности, которая определяется на основе количественных показателей.

В математической статистике есть ряд критериев, которые позволяют сделать вывод, являются ли рассматриваемые случайные выборки однородными и можно ли их объединять в одну совокупность для проведения эконометрических исследований.

Точность выходных данных существенно влияет на выводы, которые могут быть сделаны на основе эконометрического моделирования. Погрешности могут возникать при формировании алгоритма расчёта показателей, при округлении, повторном учёте тех или иных показателей и др. Все ошибки делят на систематические, т.е. такие, которые имеют постоянную величину, либо изменяются, подчиняясь определенной функциональной зависимости, и случайные, которые обусловлены влиянием случайных факторов при формировании показателей.

При формировании совокупности наблюдений необходимо обращать внимание и на наличие ошибок во входных данных. Если нет возможности избежать этих ошибок, то необходимо применять специальные методы оценивания параметров эконометрической модели.

Наиболее часто используемым методом для количественной оценки взаимосвязей в эконометрии является корреляционно-регрессионный анализ. Суть метода заключается в определении оценок количественного влияния показателей на исследуемую величину и построении на этой основе строгой зависимости между ними, которая в общем виде записывается в виде некоторой функции:

где — исследуемая величина, — показатели, влияющие на исследуемую величину.

Чаще всего с этой целью используется линейная функция. Однако возможны и другие формы зависимостей: экспоненциальная, степенная, гиперболическая и другие.

Каждая из рассматриваемых функций может быть сведена к линейной с помощью алгебраических преобразований или путем замены. По этой причине именно исследованию линейной зависимости уделяется значительное внимание.

В реальной ситуации наблюдаемые величины отклоняются от данной функциональной формы связи, поэтому в регрессионную модель включается стохастическая составляющая , которую еще называют отклонением или остатком.

В классической линейной эконометрической модели переменная s интерпретируется как случайная переменная, которая имеет нормальный закон распределения с математическим ожиданием, равным нулю, и постоянной дисперсией.

Парная регрессия. Однофакторные линейные эконометрические модели

К оглавлению…

Простейшими эконометрическими моделями являются модели парной регрессии. Парная регрессия представляет собой зависимость между двумя переменными — и , т.е. модель вида:

Здесь — зависимая переменная (результативный признак); -независимая, или объясняющая, переменная (признак-фактор). Знак означает, что между переменными и нет строгой функциональной зависимости, поэтому величина у складывается из двух составляющих:

Таким образом, — фактическое значение результативного признака; — теоретическое значение результативного признака, найденное по уравнению регрессии; — случайная величина, характеризующая отклонения между и . Случайная величина s включает влияние не учтённых в модели факторов, случайных ошибок и особенностей измерения.

В парной регрессии выбор вида математической функции (спецификация) может быть осуществлён тремя способами:

1) графическим;

2) аналитическим, т.е. исходя из теории изучаемой взаимосвязи;

3) экспериментальным.

Чаще всего эти способы применяют комплексно.

Графический способ основан на внешнем виде корреляционного поля. Напомним, что корреляционным полем называют множество точек в декартовой системе координат. Здесь — номер наблюдения, — количество наблюдений (объём статистической выборки).

Если точки корреляционного поля выстраиваются как бы вдоль гипотетической прямой, то в качестве модели парной регрессии следует брать линейную модель:

В противном случае нужно выбирать нелинейную модель.

Аналитический способ выбора типа уравнения регрессии основан на изучении материальной природы связи исследуемых признаков. Здесь важную роль играет опыт экономиста, который знаком с наработанными схемами зависимостей между социально-экономическими показателями.

При использовании экспериментального способа сравнивают величины остаточной дисперсии, рассчитанной для разных моделей:

Чем меньше величина остаточной дисперсии , тем меньше влияние не учтённых в уравнении регрессии факторов и тем лучше уравнение регрессии подходит к исходным данным.

В эконометрическом моделировании следует придерживаться принципа — чем сложнее модель, тем большее количество наблюдений требуется для её построения.

Сложность модели можно определить показателем — количеством неизвестных параметров, которые являются множителями при переменной или при функциях от переменной .

Например, для следующих моделей:

Соответственно для моделей:

При построении эконометрической модели необходимо придерживаться статистического правила:

Таким образом, если , то . Следовательно, модель можно строить, имея не менее семи наблюдений. При соответственно имеем .

Простейшими эконометрическими моделями являются однофакторные линейные модели парной регрессии. В этом случае предполагается, что между двумя исследуемыми показателями существует линейная корреляционная зависимость. В общем виде однофакторная линейная эконометрическая модель имеет вид:

где — зависимая переменная, — независимая переменная, -оцениваемые параметры, — отклонение линии регрессии от фактических наблюдений.

Чтобы найти уравнение регрессии, необходимо найти неизвестные параметры и . Их оценка осуществляется на основании статистических данных (совокупности наблюдений).

При нахождении оценок параметров уравнения регрессии возникает вопрос, каким критерием следует воспользоваться, чтобы найденная прямая наиболее точно отражала зависимость между показателями. В любом случае расчетные значения зависимой переменной, найденные с помощью уравнения регрессии, будут отклоняться истинных наблюдений.

В качестве критерия можно было бы рассматривать сумму этих отклонений. Однако, поскольку одни имеют разные знаки, то при суммировании будут взаимно «погашаться». Чтобы избежать этого, в качестве критерия предлагается рассматривать сумму квадратов этих отклонений. Этот принцип и лежит в основе метода наименьших квадратов (МНК).

Постановка задачи следующая. Уравнение регрессии будем искать в виде:

где — оценки величин и . Необходимо подобрать такие значения , которые минимизируют сумму квадратов отклонении расчетного значения от наблюдаемого , т.е. .

Заметим, что применение МНК возможно при выполнении следующих условий:

  1. Математическое ожидание остатков (ошибок) равно нулю.
  2. Случайные величины имеют одинаковую дисперсию.
  3. Остатки распределены по нормальному закону с математическим ожиданием, равным нулю и постоянной дисперсией.

Рассмотрим сумму квадратов отклонений как функцию двух переменных :

Для того чтобы найти минимум этой функции, вычислим ее частные производные первого порядка по переменным и приравняем их к нулю:

После преобразований получаем систему нормальных уравнений:

Решаем её относительно и , и получаем формулы, для вычисления параметров уравнения регрессии:

Отметим следующее свойство оценок МНК: линия регрессии всегда проходит через среднюю точку то есть: . С учётом этого оценку параметра можно найти, воспользовавшись соотношением:

Преобразовав формулу, имеем:

Умножив числитель и знаменатель на , получаем ещё одну формулу оценки коэффициента регрессии:

Рассмотрим экономический смысл этого коэффициента. Если в уравнении регрессии в качестве аргумента взять , то получим:

Таким образом, коэффициент регрессии в линейной модели показывает, на сколько единиц в среднем изменится зависимая переменная, если независимую переменную увеличить на единицу при прочих неизменных условиях. Значению свободного члена объяснений не дают.

Возможно эта страница вам будет полезна:

Решение задач по эконометрике

Задача №1.1.

В таблице 1.1 приведены данные за восемь лет об объёме прямых иностранных инвестициях (далее ПИИ) в экономику страны и объёме валового внутреннего продукта (далее ВВП).

Необходимо найти уравнение линейной регрессии, отражающее зависимость ВВП от ПИИ.

Решение:

Введём в MS Excel данные. С помощью «Мастера диаграмм» построим точечную диаграмму — корреляционное поле (рис. 1.2).

Для упрощения расчётов составим таблицу 1.2.

Найдём оценки параметров уравнения регрессии, используя формулы:

Уравнение регрессии имеет вид:

Коэффициент регрессии показывает, что при увеличении ПИИ на 1 млрд. долларов, ВВП увеличится в среднем на 23,5982 млрд. долл.

Проверка адекватности однофакторной линейной эконометрической модели, значимости её параметров и построение прогнозов

К оглавлению…

Следующий этап эконометрического моделирования заключается в оценке качества полученного уравнения и его параметров.

Для оценки тесноты и направления связи между двумя показателями используется коэффициент парной корреляции. Его можно вычислить по формуле:

где — ковариация, а — дисперсия и соответственно.

Для вычисления коэффициента парной корреляции можно также использовать преобразованную формулу:

В отличие от коэффициента регрессии, коэффициент корреляции является показателем относительной меры связи между двумя показателями. Значения коэффициента корреляции всегда находятся в пределах:

Положительное значение коэффициента свидетельствует о прямой связи, т.е. с увеличением независимой переменной , увеличивается в среднем и значение . Если коэффициент корреляции отрицательный, то связь обратная.

Если модуль коэффициента парной корреляции близок к 1 , то линейная связь между показателями тесная. Если же коэффициент близок к 0 , то связь практически отсутствует.

Если , то между случайными величинами и существует линейная функциональная зависимость. Коэффициент корреляции равен нулю, когда случайные величины и независимы

В случае, когда и , то между случайными величинами и существует корреляционная зависимость. Причём, чем ближе значение коэффициента по модулю к единице, тем теснее линейная связь между показателями.

Таким образом, коэффициент парной корреляции характеризует тесноту и направление линейной связи между показателями. Следует отметить, что знак коэффициента корреляции всегда совпадает со знаком коэффициента регрессии.

Связь между коэффициентом парной корреляции и коэффициентом регрессии выражается следующей формулой:

Ещё одним показателем адекватности линейной модели является коэффициент детерминации . Он определяется по формуле:

где — общая дисперсия, а — дисперсия, объясняемая регрессией.

Эти показатели вычисляются по формулам:

Таким образом, коэффициент детерминации — это часть дисперсии, которая объясняет регрессию. Величина коэффициента детерминации изменяется в пределах от нуля до единицы:

Если значение близко к единице, то модель адекватна, если близко к нулю, то неадекватна.

Кроме того, коэффициент детерминации показывают, какая часть вариации (изменения) зависимой переменной объясняется вариацией независимой переменной . Для определения доли вариации за счет неучтенных в модели факторов рассчитывается т.н. коэффициент остаточной детерминации:

Рассмотренные выше коэффициенты парной корреляции и детерминации, как показатели адекватности модели, имеют между собой связь, которая выражается формулой:

т.е. коэффициент детерминации равен квадрату коэффициента корреляции.

Осуществляется также проверка значимости коэффициента корреляции, которая подразумевает проверку статистической гипотезы против альтернативной гипотезы , т.е. проверяется гипотеза, заключающаяся в том, что случайные величины и не коррелируют друг с другом.

Для проверки гипотезы рассчитывается -статистика Стьюдента:

где — число степеней свободы.

Для заданного уровня значимости (допустимой вероятности ошибки) и числа степеней свободы находится табличное значение критерия. Если , то гипотеза об отсутствии корреляционной связи между переменными отвергается, в противном случае — принимает.

Для проверки значимости параметров уравнения парной регрессии и также используется -статистика Стьюдента. Расчётные значения критерия можно найти по формулам:

В знаменателях этих дробей стоят случайные ошибки параметров эконометрической модели:

где — несмещенная оценка дисперсии остатков.

Найденные расчётные значения берут по модулю и сравнивают с табличным , которое определено по уровню значимости и числу степеней свободы . Если модуль расчётного значения больше табличного, то соответствующий параметр является значимым. В противном случае он не значим.

Замечание 1.1. Требование значимости коэффициента регрессии является обязательным. Свободный член носит вспомогательный характер. Его незначимость по критерию Стьюдента не является критичным для эконометрической модели.

Для проверки адекватности эконометрической модели используют -критерий Фишера. Расчётное значение критерия находится по формуле:

Данное число сравнивается с табличным значением распределения Фишера, найденного по заданному уровню значимости и числам степеней свободы . Если расчётное значение -критерия превышает табличное, то нулевая гипотеза о равенстве нулю коэффициента регрессии отвергается, и модель признаётся адекватной. В противном случае — гипотеза принимается.

Возможно эта страница вам будет полезна:

Примеры решения задач по эконометрике

Задача №1.2.

По данным примера 1.1 найти значение коэффициентов парной корреляции и детерминации. Проверить значимость коэффициента корреляции, параметров регрессии и значимость модели в целом при уровне значимости = 0,05.

Согласно таблице 1.1, объём ПИИ в последнем временном периоде составлял млрд. долл. Предполагается, что прогнозное значение ПИИ в следующем году составит 120% от , т.е. млрд. долл. Требуется построить точечный и интервальный прогнозы для объёма ВВП на следующий год.

Решение:

Рассчитаем линейный коэффициент корреляции:

Близость коэффициента корреляции к единице указывает на тесную линейную связь между признаками. Коэффициент детерминации

показывает, что уравнением регрессии объясняется 98,41% дисперсии результативного признака, а на долю прочих факторов приходится 1,59%.

Проверим значимость коэффициента парной корреляции по критерию Стьюдента. Расчётное значение критерия равно:

По уровню значимости и количеству степеней свободы определим табличное значение критерия .

Расчётное значение, взятое по модулю, больше табличного. Следовательно, коэффициент корреляции является значимым с надёжностью не менее 95% .

Для оценки статистической значимости параметров регрессии рассчитаем -критерий Стьюдента. Вычислим случайные ошибки параметров и фактические значения -статистик:

Табличное значение -критерия Стьюдента при и числе степеней свободы определено выше и составляет .

Модули обоих расчётных значения больше табличного, поэтому признаём статистическую значимость параметров регрессии с надёжностью не менее 95%.

Оценим качество уравнения регрессии в целом с помощью -критерия Фишера. Рассчитаем фактическое значение -критерия:

Количество степеней свободы для критерия Фишера , . При уровне значимости табличное значение критерия равно:

Так как , то найденная эконометрическая модель является статистически значимой с надёжностью не менее 95%.

Для вычисления точечного прогноза объёма ВВП достаточно в уравнение регрессии подставить предполагаемый объём ПИИ, т.е. 30,72 млрд. долл. Точечный прогноз для ВВП будет следующим:

Ошибка прогноза составляет:

Интервальный прогноз для оценивают по формуле .

Поэтому доверительный интервал будет следующим:

Замечание 1.2. Эконометрическую модель можно считать достоверной, если построенные с помощью неё прогнозы отклоняются от фактических данных не более, чем на 10%. Модель из Задача 1.1 была построена по статистическим данным 2007-2014 гг. Фактические данные за 2015 г. составили млрд. долл. и млрд. долл. Подставив в найденное уравнение регрессии , мы оценим теоретическое (прогнозное) значение у, т.е.

Абсолютное отклонение составит:

Относительное отклонение:

Так как , то построенную модель парной регрессии можно считать адекватной и пригодной для краткосрочных прогнозов.

Возможно эта страница вам будет полезна:

Курсовая работа по эконометрике

Оценивание параметров в однофакторных нелинейных эконометрических моделях

К оглавлению…

Необходимость построения нелинейных моделей парной регрессии приводит к некоторому усложнению преобразований данных и вычислений. Однако при современном развитии информационных технологий эти трудности вполне преодолимы.

Заказать работу по эконометрике

Задача №1.3.

В таблице 1.3 приведены данные по десяти однотипным заводам, специализирующихся на ремонте шахтного оборудования в Донецком регионе. Годовой объём выпуска продукции (млн. руб.) зависит от фонда оплаты труда (млн. руб.).

Требуется:

1) средствами MS Excel построить нелинейные уравнения парной регрессии от ;

2) выбрать лучшую модель.

Решение:

Принято различать два класса уравнений нелинейных регрессий. Первый из них включает нелинейные уравнения относительно объясняющих переменных, но линейные по оцениваемым параметрам.

К ним, например, относятся: многочлены (полиномы) различных степеней

и т.д.; равносторонняя гипербола

полулогарифмическая функция

Регрессии первого класса приводятся к линейному виду заменой переменных. Дальнейшая оценка параметров производится с помощью МНК.

Например, парабола второй степени

приводится к линейному виду с помощью замены:

В результате приходим к двухфакторному уравнению

оценка параметров которого осуществляется при помощи МНК.

Равносторонняя гипербола

может быть использована для характеристики связи удельных расходов сырья, материалов, топлива от объёма выпускаемой продукции, времени обращения товаров от величины товарооборота, процента прироста заработной платы от уровня безработицы (кривая Филипса), расходов на непродовольственные товары от доходов или общей суммы расходов (кривые Энгеля) и в других случаях. Гипербола приводится к линейному уравнению заменой: . Аналогичным образом приводятся к линейному виду зависимости , и др.

Второй класс нелинейных уравнений — регрессии, нелинейные по оцениваемым параметрам. К ним, например, относятся: степенная ; показательная ; экспоненциальная . Эти модели приводятся к линейному виду логарифмированием и заменой переменных.

Покажем, как это делается на примере степенной функции :

где

Таким образом, мы применяем МНК к преобразованным данным, а затем потенцированием (обратная замена) находим искомое уравнение.

Широкое использование степенной функции связано с тем, что параметр в ней имеет чёткое экономическое истолкование — он является коэффициентом эластичности.

Такие задачи удобно решать в MS Excel. Для этого нужно выполнить следующую последовательность действий:

• ввести экспериментальные данные в столбцы (или построчно);

• на основании введённых данных построить точечную диаграмму;

• активизировать данные диаграммы, щелкнув по точкам левой кнопкой «мыши»;

• в пункте меню «Диаграмма» выбрать опцию «Добавить линию тренда…»;

• в пункте меню «Тип» выбрать «Полиномиальная (степень 2-я)» или «Логарифмическая», или «Степенная», или «Экспоненциальная»;

• в пункте «Параметры» — «Показывать уравнение на диаграмме» и «Поместить на диаграмму величину достоверности аппроксимации (R1)».

Для величины достоверности аппроксимации выполняется неравенство: . Формула расчёта (см. справку MS Excel) содержит сумму квадратов отклонений. Чем ближе к единице, тем лучше модель описывает фактические данные.

На рис. 1.3-1.6 поместим корреляционное поле, соответствующую линию регрессии, уравнение регрессии и величину достоверности аппроксимации .

Наибольшую величину достоверности аппроксимации имеет полиномиальная модель второй степени (рис. 1.4). Поэтому, на первый взгляд, эту модель можно признать лучшей.

Однако ранее было приведено статистическое правило:

Полиномиальная модель второй степени

имеет два неизвестных параметра и , которые являются множителями при переменной или при функциях от переменной . Поэтому и должно выполняться условие .

Т.к. в Задаче 1.3 имеем , то признать данную модель лучшей было бы некорректно. Отвергаем полиномиальную модель второй степени и рассматриваем остальные.

Среди оставшихся моделей наибольшую величину достоверности аппроксимации имеет экспоненциальная модель (рис. 1.6):

Введём замену и запишем модель в виде, который используется в MS Excel:

Логарифмируя обе части уравнения, получим

Следовательно, экспоненциальная модель имеет один неизвестный параметр , который является множителем при переменной . Поэтому и условие выполняется,т.к. .

Значит, лучшей моделью является экспоненциальная модель (рис. 1.6),

Задача 1.3 выполнена.

Заканчивая эту главу, заметим, что, эконометрические модели парной регрессии описаны во многих учебниках и учебных пособиях. Несмотря на свою простоту, эти модели весьма востребованы в практических задачах экономики.

Возможно эта страница вам будет полезна:

Лабораторная работа по эконометрике

Множественная регрессия в эконометрических задачах. Производственная функция Кобба-Ду гласа в эконометрическом моделировании

К оглавлению…

Американский экономист Пол Дуглас в 30-е годы XX в. наблюдал за данными перерабатывающей промышленности США на протяжении двадцати лет и заметил зависимость между экономическими показателями. Он не сумел определить функцию, описывающую эту зависимость, и обратился в 1927 г. к математику Чарльзу Коббу, который предложил следующую функцию:

где — объём выпущенной продукции; — затраты труда; — затраты производственных фондов; и — неизвестные параметры модели, определяемые с помощью МНК на основе эмпирических данных.

Так появилась производственная функция Кобба-Дугласа, принадлежащая к наиболее известным производственным функциям, широко применяемым в экономических исследованиях.

С точки зрения эконометрии эта функция — не что иное, как двух-факторная нелинейная регрессионная модель. С точки зрения математики — мультипликативная степенная функция.

Для определения неизвестных параметров этой модели прологарифмируем левую и правую части функции:

Введём замены

и получим линейную модель

С помощью МНК будем искать параметры и Система нормальных уравнений имеет вид:

Продемонстрируем на конкретных данных этапы построения производственной функции Кобба-Дугласа.

Возможно эта страница вам будет полезна:

Помощь по эконометрике

Задача №2.1.

Финансово-промышленная группа «Росслад» владеет шестнадцатью заводами по производству сахара. Имеются данные (табл. 9.3) прошлого года о выпуске продукции у (млн. руб.), затратах труда (млн. руб.) и затратах производственных фондов (ПФ) (млн. руб.).

Требуется:

A) Построить производственную функцию Кобба-Дугласа. Б) Рассчитать характеристики:

1) среднюю производительность труда;

2) среднюю фондоотдачу;

3) предельную производительность труда;

4) предельную фондоотдачу;

5) эластичность выпуска продукции по затратам труда;

6) эластичность выпуска продукции по ПФ;

7) потребность в ресурсах труда;

8) потребность в ПФ;

9) фондовооружённость труда;

10) предельную норму замещения затрат труда производственными фондами;

11) эластичность замещения ресурсов.

B) Найти прогноз выпуска для заданных значений . руб. и . руб.

Решение:

А) Составим расчётную таблицу 2.2.

Для наших данных система нормальных уравнений будет следующей:

Введём в рассмотрение матрицы

Запишем систему в матричном виде

Согласно методу обратной матрицы

Обратную матрицу находим с помощью Microsoft Excel. Напомним, что операции с матрицами желательно завершать нажатием клавиши «F2» и «Ctrl+Shift+Enter». Итак, имеем:

Так как

Значения неизвестных параметров:

Производственная функция Кобба-Дугласа имеет вид:

Б) Рассчитаем основные характеристики производственной функции: 1) средняя производительность труда равна:

Следовательно, с увеличением затрат труда (при неизменных затратах ПФ ) средняя производительность труда снижается. И, наоборот, увеличение затрат ПФ (при неизменных затратах труда) ведёт к росту средней производительности труда;
2) средняя фондоотдача равна:

Таким образом, с увеличением затрат ПФ (при неизменных затратах труда) средняя фондоотдача снижается. Увеличение же затрат труда (при неизменных затратах ПФ) ведёт к росту средней фондоотдачи; 3) предельная производительность труда:

Следовательно, с увеличением затрат труда (при неизменных затратах ПФ) предельная производительность труда снижается. Наоборот, увеличение затрат ПФ (при неизменных затратах труда) ведёт к росту предельной производительности труда;

4) предельная фондоотдача:

Таким образом, с увеличением затрат ПФ (при неизменных затратах труда) предельная фондоотдача снижается. Увеличение же затрат труда (при неизменных затратах ПФ) ведёт к росту предельной фондоотдачи; 5) эластичность выпуска продукции по затратам труда:

Данный показатель указывает на то, что при увеличении затрат труда на 1% выпуск продукции у предельно увеличивается на 0,2743%; 6) эластичность выпуска продукции по ПФ:

При увеличении ПФ на 1% выпуск продукции может предельно увеличиться на 0,6892%;

7) производственная функция позволяет рассчитать потребность в одном из ресурсов при заданном объеме выпуска продукции и заданной величине другого ресурса.

Потребность в ресурсах труда:

8) потребность в ПФ:

9) производственная функция позволяет исследовать вопросы соотношения, замещения, взаимодействия ресурсов. В частности, определяется важный экономический показатель — фондовооружённость труда:

10) взаимодействующие в рамках производственной функции ресурсы могут замещать друг друга. Предельная норма замещения затрат труда производственными фондами равна:

Предельная норма замещения зависит не только от параметров и производственной функции Кобба-Дугласа, но и от соотношения объёмов ресурсов. Знак «минус» означает, что при фиксированном объёме выпуска продукции необходимо при уменьшении одного ресурса увеличивать другой.

11) влияние соотношения объемов ресурсов на предельную норму замещения находит свое выражение в эластичности замещения ресурсов. Этот показатель определяется как отношение относительных приращений фондовооружённости труда и предельной нормы замещения ресурсов:

Эластичность замещения ресурсов для производственной функции Кобба-Дугласа всегда равна единице. Т.е. изменению фондовооружённости труда на 1% соответствует изменение предельной нормы замещения также на 1%.

В) Найдём точечный прогноз выпуска продукции для заданных значений

Задача 2.1 решена полностью.

Многофакторные линейные эконометрические модели

К оглавлению…

Ввиду чёткой интерпретации результатов наиболее широко в множественной регрессии используется линейная функция.

Рассмотрим многофакторную линейную эконометрическую модель:

Ей соответствует линейное уравнение множественной регрессии

Параметры, являющиеся множителями при независимых переменных, называются коэффициентами «чистой» регрессии. Они характеризуют среднее изменение результата с изменением соответствующего фактора на единицу при неизмененном значении других факторов.

Классический подход к оцениванию параметров линейной модели множественной регрессии основан на МНК:

Возможно эта страница вам будет полезна:

Решение задач по эконометрике в Excel

Задача №2.2.

Открытое акционерное общество «РосСельхозХолдинг» более десяти лет производит пшеницу в своих тридцати агроцехах, расположенных в разных областях Российской Федерации. Имеются данные прошлого года (табл. 9.5) о прибыли предприятия (млн. руб.), среднегодовом

удельном весе сельскохозяйственных рабочих в составе агроцеха , среднегодовой численности персонала (тыс. чел.), среднесуточном времени простоя техники в рабочее время (часы), среднемесячных выплатах за вредность труда на одного работника (руб.), среднегодовой текучести кадров (%).

Предполагая, что между переменной и независимыми переменными существует линейная зависимость, требуется:

  1. Найти линейное уравнение множественной регрессии;
  2. С помощью алгоритма пошаговой регрессии построить эконометрическую модель с максимальным числом значимых коэффициентов при уровне значимости 0,05.
  3. Построить точечный и интервальный прогнозы для при допущении, что средние показатели по независимым переменным будут превышены на 5%.

Решение:

В Microsoft Excel имеется пункт меню «Сервис», который содержит надстройку «Анализ данных». В нём выбираем инструмент анализа «Регрессия». Вводим входной интервал для у и входной интервал для . Т.к. в условии задан уровень значимости , то выбираем уровень надёжности 95% . В параметрах вывода отмечаем «Новый рабочий лист» и жмём «ОК». Результаты вычислений, округлённые до четвёртого знака приведены на рис. 2.1.

  • Столбец «Коэффициенты» (рис. 2.1) содержит найденные параметры уравнения регрессии. Т.о. линейная пятифакторная регрессионная модель имеет вид:

По коэффициентам регрессии можно давать объяснения. Например, если текучесть кадров увеличится на 1%, то прибыль предприятия снизится в среднем на 0,1714 млн. руб. При этом значения переменных должны оставаться неизменными. Значение свободного члена не объясняют.

  • Прокомментируем данные отчета на рис. 9.8.

Множественный коэффициент корреляции характеризует тесноту линейной связи рассматриваемого набора факторов с исследуемым признаком . Границы изменения коэффициента множественной корреляции от 0 до 1. Чем ближе его значение к 1 (в нашем примере ), тем теснее линейная связь результативного признака со всем набором исследуемых факторов.

Множественный коэффициент детерминации , то дисперсия (т.е. разброс) прибыли у на 99,48% объясняется регрессией, т.е. зависимостью от показателей . Величина (т.е. 0,52%) характеризует долю дисперсии , вызванную влиянием не учтённых в модели факторов.

В разделе «Дисперсионный анализ» (рис. 9.8) на пересечении строки «Остаток» и столбца «MS» находится несмещённая оценка дисперсии остатков . Извлекая квадратный корень, получим среднее квадратическое отклонение — стандартную ошибку . В следующей строке располагается число наблюдений .

Раздел «Дисперсионный анализ» называют ANOVA-таблицей (analysis of variance). Она содержит обозначение (degree of freedom) — число степеней свободы. В уравнение регрессии входит независимых переменных (строка «Регрессия»), в строке «Остаток» содержится , что в сумме (строка «Итого») составляет .

Значимость уравнения множественной регрессии в целом определяется с помощью статистического -критерия Фишера. Вероятность того, что будет меньше фактического значения , можно оценить по формуле

Для нашей задаче:

Эту вероятность сравниваем с заданным уровнем значимости . Так как , т.е. вероятность ошибки не превысила 5%, то пятифак-торное уравнение регрессии значимо с надёжностью не менее 95%.

Последний раздел отчёта на рис. 9.8 содержит коэффициенты регрессии

В столбце «Стандартная ошибка» расположены

Для проверки значимости коэффициентов регрессии применяют статистический -критерий Стьюдента. Пусть — случайная величина, имеющая распределение Стьюдента с числом степеней свободы . Вычисляются фактические значения -критерия Стьюдента:

Они помещены в столбце «-статистика»:

Заметим, что свободный член обычно не проверяется на статистическую значимость. Вероятность того, что будет меньше фактического значения , можно оценить по формуле

Для нашей задачи (столбец «-Значение») имеем:

Эти вероятности сравниваем с заданным уровнем значимости . Так как

то оценки коэффициентов регрессии

не являются значимыми. Т.к.

то оценки коэффициентов регрессии

значимы с надёжностью не менее 95%.

Среди незначимых оценок наибольшая вероятность ошибки

поэтому переменная должна быть исключена из модели. Эта процедура повторяется до тех пор, пока все оценки коэффициентов регрессии не будут статистически значимыми.

Такой подход называют алгоритмом пошагового регрессионного анализа. После завершения алгоритма мы получим уравнение регрессии с максимальным числом значимых коэффициентов.

На рис. 9.8 в столбцах «Нижние 95%» и «Верхние 95%» содержит интервальные оценки коэффициентов регрессии. Т.к. среди этих параметров оказались незначимые, то нет смысла давать объяснения их интервальным оценкам. Это будет сделано после построения окончательной модели.

Повторяем те же действия, что и в начале решения задачи. В Microsoft Excel в пункте меню «Сервис» выбираем пакет прикладных программ «Анализ данных». Пользуемся инструментом анализа «Регрессия». Вводим входной интервал для у и входной интервал для при уровне надёжности 95%. Результаты вычислений округляем до четвёртого знака и приводим отчет на рис. 2.2.

Получена линейная четырёхфакторная эконометрическая модель:

Т.к. множественный коэффициент корреляции близок к 1, то наблюдается высокая теснота линейной связи факторов с исследуемым признаком . Т.к. множественный коэффициент детерминации , то дисперсия прибыли на 99,47% объясняется найденной регрессией. Величина (т.е. 0,53%) характеризует долю дисперсии у, вызванную влиянием не учтённых в модели факторов.

Фактическое значение критерия Фишера составляет . Оценена вероятность . Эту вероятность сравниваем с заданным уровнем значимости . Т.к. , то четырёхфакторное уравнение регрессии значимо с надёжностью не менее 95%.

Найденная вероятность больше уровня значимости . Оценка коэффициента регрессии не является значимой, поэтому переменная должна быть исключена из модели.

Вводим входной интервал для и входной интервал для при уровне надёжности 95%. Округляем данные до четвёртого знака и приводим отчёт на рис. 2.3.

Линейная трёхфакторная эконометрическая модель имеет вид:

Отчет на рис. 9.10 содержит следующую информацию. Множественный коэффициент корреляции близок к 1. Следовательно, наблюдается высокая теснота линейной связи факторов с признаком . Множественный коэффициент детерминации . Значит, дисперсия у на 99,46% объясняется найденной регрессией. Величина (т.е. 0,54%) характеризует долю дисперсии у, вызванную влиянием не учтённых в модели факторов.

Фактическое значение критерия Фишера . Получена вероятность . Т.к. , то трёхфакторное уравнение регрессии значимо с надёжностью не менее 95%.

Столбец « -Значение» содержит вероятности для коэффициентов регрессии

(свободный член не анализируется). Все вероятности оказалась меньше уровня значимости . Следовательно, все оценки коэффициентов регрессии значимы.

Алгоритм пошагового регрессионного анализа завершён. Построенная трёхфакторная модель — это уравнение регрессии с максимальным числом значимых коэффициентов.

В столбцах «Нижние 95%» и «Верхние 95%» содержит интервальные оценки параметров уравнения регрессии. Они вычислены по данным столбцов «Коэффициенты» и «Стандартная ошибка»:

Численные значения доверительных интервалов объясняют следующим образом. Например, точеная оценка с надёжностью не менее 95% может колебаться от 5,7325 до 8,8249.

  • Построим точечный и интервальный прогнозы для прибыли предприятия v при допущении, что средние показатели по будут превышены на 5%.

Так как

то предполагаемые значения:

Вектор предполагаемых значений:

Точечный прогноз для среднего значения прибыли агроцеха:

Вычислим дисперсию прогноза:

Извлекая квадратный корень, найдём среднеквадратическую ошибку прогноза .

Доверительный интервал для среднего значения (математического ожидания) прогноза зависимой переменной находим по формуле:

Рассчитаем дисперсию и среднее квадратическое отклонение индивидуального прогноза:

Доверительный интервал для индивидуального значения прогноза:

Задачи 2.2 выполнено полностью.

Возможно эта страница вам будет полезна:

Системы эконометрических уравнений

Границы применимости классического метода наименьших квадратов в эконометрнческом моделировании

К оглавлению…

Рассмотрим многофакторную линейную эконометрическую модель:

При построении такой модели предполагают, что выполняются следующие гипотезы.

  • Спецификация модели:

где — номер наблюдения.

  • Числовые значения независимых переменных являются детерминированными (не случайными) величинами. Векторы

являются линейно независимыми в пространстве . 3. Случайные величины удовлетворяют условиям. Их математические ожидания равны нулю:

Дисперсии:

Причём значения математических ожиданий и дисперсий ошибок не зависят от номера наблюдений .

  • При ковариации ошибок равны нулю:

Т.е. для разных наблюдений имеет место статистическая независимость (некоррелированность) ошибок.

  • (дополнительная гипотеза). Ошибки являются нормально распределёнными случайными величинами со средним 0 и дисперсией , т.е.

При выполнении гипотез 1 — 5 эконометрическая модель называется нормальной линейной регрессионной моделью.

Важнейшую роль в эконометрическом анализе играет следующая теорема, формулировка которой приводится без доказательства.

Теорема Гаусса-Маркова. Предположим, что для линейной модели множественной регрессии выполняются гипотезы 1 — 4. Тогда оценки коэффициентов регрессии , найденные с помощью МНК, являются наиболее эффективными (в смысле наименьшей дисперсии) среди всех линейных несмещённых оценок.

Заметим, что при невыполнении отдельных гипотез теорема Гаусса-Маркова становится неприменимой. Следовательно, и классический МНК не будет давать достоверных результатов.

Нарушение условия линейной независимости векторов (гипотеза

2) приводит к нежелательному явлению, называемому мультиколлинеар-ностью. Условие независимости дисперсии ошибок от номера наблюдения (гипотеза 3) называется гомоскедастичностью. Нарушение данного условия называют гетероскедастичностью. Невыполнение гипотезы 4 называется автокорреляцией остатков.

В эконометрическом моделировании надо уметь выявлять эти нежелательные явления и устранять их. При невозможности устранения — научиться моделировать в условиях невозможности применения классического МНК.

Мультиколлинеарность в массиве независимых переменных эконометрической модели

К оглавлению…

Мультиколлинеарность означает существование тесной линейной зависимости, или сильной корреляции, между двумя или более объясняющими переменными.

Она негативно влияет на количественные характеристики эконометриче-ской модели, или делает её построение вообще невозможным.

Задача №2.3.

На производительность труда однотипных малых предприятий влияет ряд факторов, среди которых: удельный вес рабочих на предприятии ; премии и другие вознаграждения на одного работника (ден. ед.); оборачиваемость нормируемых оборотных средств (дни). Исследовать на мультиколлинеарность переменные . При наличии мультиколлинеарности предложить меры по её устранению. Статистические данные по десяти предприятиям приведены в табл. 2.4. Уровень значимости .

Решение:

Исследуем мультпколлинеарность в массиве независимых переменных при помощи алгоритма Фаррара-Глобера. Расчёты проведём в Microsoft Excel, округляя числа до четвёртого знака после запятой.

  • Нахождение корреляционной матрицы выполним с помощью встроенной функции «Корреляция» (Сервиз—>Анализ данных —> Корреляция), которая позволяет находить коэффициенты корреляции более чем двух факторов:

Её определитель: Он вычислен с помощью функции МОПРЕД().

При имеется полная мультиколлинеарность, а если , то мультиколлинеарность отсутствует. В нашем случае , поэтому продолжим исследование на наличие мультиколлинеарности.

  • Определим фактическое значение критерия «хи»-квадрат Пирсона:

Фактическое значение критерия сравнивается с табличным значением при степенях свободы и уровне значимости : Т.к. то в массиве объясняющих переменных существует мультиколлинеарность.

  • С помощью функции МОБР() определим обратную матрицу:
  • Вычисление -критериев Фишера осуществляем по формуле

где — диагональные элементы матрицы . Имеем

Фактические значения критериев сравниваются с табличным при степенях свободы и уровне значимости :

Т.к. , то независимые переменные и мультиколлинеарны с другими.

  • Находим частные коэффициенты корреляции по формуле

где — элемент матрицы , содержащийся в -ой строке и -ом столбце; и — диагональные элементы матрицы . Получаем:

Вычисление -критериев Стьюдента осуществляем по формуле

Имеем

Фактические значения критериев сравниваются с табличным при степенях свободы и уровне значимости .

Т.к. , то между независимыми переменными и существует мультиколлинеарность.

Для того, чтобы избавиться от мультиколлинеарности, можно исключить одну из переменных мультиколлинеарной пары и . Удалить следует переменную , т.к. у неё больше значение -критерия. Следовательно, она больше влияет на общую мультиколлинеарность модели. Однако этот шаг не должен противоречить экономическому смыслу задачи.

Кстати готовые на продажу задачи тут, и там же теория из учебников может быть вам поможет она.

Гетсроскедастичность в эконометрическом моделировании

К оглавлению…

Условие независимости дисперсии ошибок от номера наблюдения называется гомоскедастичностью. Нарушение данного условия вызывает нежелательное явление, называемое гетероскедастичиостью.

Гетероскедастичность возникает, когда значения переменных в уравнении регрессии сильно отличаются в разных наблюдениях, т.е. если анализируемые объекты неоднородны. Неоднородность объектов может отражаться в несопоставимости их «размеров».

Например, в одну выборку объединены крупные и мелкие банки, у которых анализируется зависимость прибыли от величины активов . В этом случае можно ожидать, что для крупных банков колебание прибыли будет выше, чем для мелких. Величина колебаний повлияет на дисперсию ошибок.

Неоднородность может также проявляться, когда в одну выборку объединяются предприятия разного профиля деятельности.

Часто при исследовании совокупности данных на гетероскедастичность предполагается, что дисперсия остатков пропорциональна квадрату значений одной из независимых переменных .

В этом случае наиболее эффективен параметрический тест Гольд-фельда-Квандта. Опишем его алгоритм.

Задача №2.4.

В таблице 2.5 приведены данные по зависимой переменной и независимым переменным . Требуется проверить наличие гетероскедастичности с помощью параметрического теста Гольд-фельда-Квандта при уровне значимости .

Решение:

Применим параметрический тест Гольдфельда-Квандта.

Предположим, что дисперсия остатков пропорциональна квадрату значений одной из независимых переменных . Графически определим эту переменную. Построим поля парной корреляции (рис. 2.4 — 2.6).

Как видно из рис. 2.4 — 2.6 источником гетероскедастичности является, скорее всего, переменная .

  • Упорядочим наблюдения в соответствии с возрастанием значений вектора .
  • Требуется отбросить с наблюдений, содержащихся в середине массива данных. Т.к. , то по формуле получаем, что .

Данные примут вид (табл. 2.6).

  • Построим две эконометрические модели на основе МНК по двум образованным совокупностям наблюдений объёмом и . Этот объём превышает общее количество независимых переменных , что и требуется для теста.

В MS Excel в пункте меню «Сервис» выбираем надстройку «Анализ данных». Пользуемся инструментом анализа «Регрессия». Вводим входной интервал для и входной интервал для при уровне надёжности 95%. Имеем следующие модели:

  • Найдём сумму квадратов остатков и для первой и второй моделей, соответственно:
  • Вычислим критерий , разделив большую сумму квадратов остатков на меньшую. Для степеней свободы и определим табличное значение критерия Фишера . Т.к. , то гетероскедастичность имеется с надёжностью не менее 95%. Рассмотрение задачи 2.4 окончено.