Готовые задачи по эконометрике

Оглавление:

Задачи по эконометрике

Готовые задачи по эконометрике, надеюсь они вам помогут.

Если что-то непонятно вы всегда можете написать мне в воцап и я вам помогу!

Эконометрика

Эконометрика – это самостоятельная научная дисциплина, объединяющая совокупность теоретических результатов, приемов, методов и моделей, предназначенных для того, чтобы на базе экономической теории, экономической статистики и экономических измерений, математико-статистического инструментария придавать конкретное количественное выражение общим (качественным) закономерностям, обусловленным экономической теорией.

Эконометрика – одна из базовых дисциплин экономического образования во всем мире.

Эконометрические модели парной регрессии

Эконометрика является одной из важнейших составляющих современного экономического образования. Применение эконометрических методов является необходимым условием проведения качественных экономических исследований.

Современную эконометрику можно разделить на два направления: теоретическую и прикладную.

Теоретическая эконометрика занимается изучением специальных вероятностных (т.н. регрессионных) моделей, используя при этом аппарат теории вероятностей и математической статистики.

В основе прикладной эконометрики лежит применение вероятностных моделей для количественного описания и анализа экономических явлений и процессов.

Между этими направления существует глубокая двусторонняя взаимосвязь. Основные результаты теоретической эконометрики в виде статистических тестов и новых классов вероятностных моделей находят свое применение при решении прикладных задач. С другой стороны, в прикладной эконометрике в процессе исследования экономических явлений возникают ситуации или наблюдаются эффекты, которые не описываются существующими моделями. Это является предпосылкой для дальнейшего развития теоретического аппарата.

Термин «эконометрика» дословно читается как «измерения в экономике». Однако не каждое измерение в экономике относится к эконометрике, поэтому дадим точное определение.

Эконометрика (или эконометрия) изучает методы оценивания параметров моделей, характеризующих количественную взаимосвязь между экономическими показателями, а также рассматривает основные направления применения этих моделей в экономических исследованиях.

Предметом изучения эконометрики являются социально-экономические системы, процессы или явления, описываемые моделями. Методы исследования — математические методы, базирующиеся на теории вероятностей и математической статистике (далее ТВиМС), и других разделах математики. Структурно эконометрические исследования приведены на рис. 1.1.

Задачи по эконометрике

Построение эконометрической модели условно делят на четыре этапа:

  1. спецификация модели, т.е. её запись в математической форме;
  2. сбор и подготовка экономической информации;
  3. оценивание параметров модели;
  4. проверка модели на достоверность.

Этапы 1) и 2) взаимозаменяемы. Полученную модель применяют для прогнозирования, планирования и с другими целями.

Термин «эконометрика» был введен в научный оборот в начале 20-го века. В 1928 г. была опубликована работа Ч. Кобба и П. Дугласа, посвященная исследованию производственной функции, связывающей объём выпуска продукции в отрасли, затраты труда и затраты капитала. Модель производственной функции Кобба-Дугласа является, пожалуй, первым примером использования эконометрики и отражает классический подход к эконометрическому анализу.

Окончательное становление эконометрики относят к 1930 году, когда европейскими и американскими учёными было основано «Эконометриче-ское сообщество». С 1933 г. выходит журнал «Эконометрия», издающийся этим сообществом.

Возможно эта страница вам будет полезна:

Предмет эконометрика

Основателями эконометрии считаются Р. Фриш, Я. Тинберген, И. Шумпетер, Л. Клейн, Р. Стоун и другие учёные. Их целью было объединение экономической теории с математическими и статистическими методами. Модели, предложенные этими учеными, способствовали развитию математического и статистического аппарата и расширению области применения эконометрики.

После Второй мировой войны были построены комплексные эконо-метрические модели на макроуровне, в которых основное внимание уделялось спросу, финансовому состоянию, налогам, прибылям, ценам и другим важнейшим экономическим показателям.

Наиболее используемыми в эконометрии являются: производственные функции; функции потребления различных групп населения; функции предпочтения потребителей; межотраслевые модели производства, распределения и потребления продукции; модели экономического равновесия.

Помимо экономических исследований, эконометрические методы успешно применяются в биологии, истории, социологии и некоторых других общественных и естественных науках, где необходимо оценивать взаимосвязи между большим количеством переменных.

Важность данной науки подчеркивает тот факт, что за эконометрические исследования многократно присуждалась Нобелевская премия в области экономики.

В настоящее время эконометрия продолжает динамично развиваться и охватывает всё новые сферы экономических знаний.

Особенности эконометрических моделей

Математическая модель социально-экономической системы, процесса или явления представляет собой абстрактную запись основных его закономерностей с помощью математических формул и соотношений. Эконометрические модели относятся к функциональным стохастическим моделям. Они количественно описывают корреляционно-регрессионную связь между исследуемыми показателями.

Эконометрическая модель содержит три группы элементов: вектор Задачи по эконометрике — неизвестные характеристики объекта, которые необходимо определить; вектор Задачи по эконометрике— характеристики внешних по отношению к объекту условий, которые, изменяясь, влияют на изучаемые параметры; матрица Задачи по эконометрике — совокупность внутренних параметров объекта.

В данном случае Задачи по эконометрике и Задачи по эконометрике являются экзогенными параметрами (т.е., параметрами, которые определяются вне модели), a Задачи по эконометрике — эндогенный параметр, значения которого определяются из модели.

В общем виде эконометрическую модель можно записать в виде:

Задачи по эконометрике

Здесь Задачи по эконометрике — входные экономические показатели, Задачи по эконометрике — случайная (стохастическая) составляющая, которые посредством функции регрессии влияют на Задачи по эконометрике.

Для построения эконометрической модели необходимо выполнение следующих условий:

наличие достаточно большой совокупности наблюдений;

  • однородность совокупности наблюдений;
  • точность входных данных.

В отношении оценивания степени однородности совокупности наблюдений существует много различных подходов. Впрочем, все исследователи согласны с тем, что экономические наблюдения, как правило, неоднородны. Поэтому речь может идти лишь о достижении определенной степени однородности, которая обеспечит достоверность экономических выводов.

Различают качественную и количественную однородность. Под первой подразумевается однотипность экономических объектов, их одинаковое качество и определенное назначение. Под второй — однородность группы единиц совокупности, которая определяется на основе количественных показателей.

В математической статистике есть ряд критериев, которые позволяют сделать вывод, являются ли рассматриваемые случайные выборки однородными и можно ли их объединять в одну совокупность для проведения эконометрических исследований.

Точность выходных данных существенно влияет на выводы, которые могут быть сделаны на основе эконометрического моделирования. Погрешности могут возникать при формировании алгоритма расчёта показателей, при округлении, повторном учёте тех или иных показателей и др. Все ошибки делят на систематические, т.е. такие, которые имеют постоянную величину, либо изменяются, подчиняясь определенной функциональной зависимости, и случайные, которые обусловлены влиянием случайных факторов при формировании показателей.

При формировании совокупности наблюдений необходимо обращать внимание и на наличие ошибок во входных данных. Если нет возможности избежать этих ошибок, то необходимо применять специальные методы оценивания параметров эконометрической модели.

Наиболее часто используемым методом для количественной оценки взаимосвязей в эконометрии является корреляционно-регрессионный анализ. Суть метода заключается в определении оценок количественного влияния показателей на исследуемую величину и построении на этой основе строгой зависимости между ними, которая в общем виде записывается в виде некоторой функции:

Задачи по эконометрике

где Задачи по эконометрике — исследуемая величина, Задачи по эконометрике — показатели, влияющие на исследуемую величину.

Чаще всего с этой целью используется линейная функция. Однако возможны и другие формы зависимостей: экспоненциальная, степенная, гиперболическая и другие.

Каждая из рассматриваемых функций может быть сведена к линейной с помощью алгебраических преобразований или путем замены. По этой причине именно исследованию линейной зависимости уделяется значительное внимание.

В реальной ситуации наблюдаемые величины отклоняются от данной функциональной формы связи, поэтому в регрессионную модель включается стохастическая составляющая Задачи по эконометрике, которую еще называют отклонением или остатком.

В классической линейной эконометрической модели переменная s интерпретируется как случайная переменная, которая имеет нормальный закон распределения с математическим ожиданием, равным нулю, и постоянной дисперсией.

Парная регрессия. Однофакторные линейные эконометрические модели

Простейшими эконометрическими моделями являются модели парной регрессии. Парная регрессия представляет собой зависимость между двумя переменными — Задачи по эконометрике и Задачи по эконометрике, т.е. модель вида:

Задачи по эконометрике

Здесь Задачи по эконометрике — зависимая переменная (результативный признак); Задачи по эконометрике -независимая, или объясняющая, переменная (признак-фактор). Знак Задачи по эконометрике означает, что между переменными Задачи по эконометрике и Задачи по эконометрике нет строгой функциональной зависимости, поэтому величина у складывается из двух составляющих:

Задачи по эконометрике

Таким образом, Задачи по эконометрике — фактическое значение результативного признака; Задачи по эконометрике — теоретическое значение результативного признака, найденное по уравнению регрессии; Задачи по эконометрике — случайная величина, характеризующая отклонения между Задачи по эконометрике и Задачи по эконометрике. Случайная величина s включает влияние не учтённых в модели факторов, случайных ошибок и особенностей измерения.

В парной регрессии выбор вида математической функции (спецификация) Задачи по эконометрике может быть осуществлён тремя способами:

1) графическим;

2) аналитическим, т.е. исходя из теории изучаемой взаимосвязи;

3) экспериментальным.

Чаще всего эти способы применяют комплексно.

Графический способ основан на внешнем виде корреляционного поля. Напомним, что корреляционным полем называют множество точек Задачи по эконометрике в декартовой системе координат. Здесь Задачи по эконометрике — номер наблюдения, Задачи по эконометрике — количество наблюдений (объём статистической выборки).

Если точки корреляционного поля выстраиваются как бы вдоль гипотетической прямой, то в качестве модели парной регрессии следует брать линейную модель:

Задачи по эконометрике

В противном случае нужно выбирать нелинейную модель.

Аналитический способ выбора типа уравнения регрессии основан на изучении материальной природы связи исследуемых признаков. Здесь важную роль играет опыт экономиста, который знаком с наработанными схемами зависимостей между социально-экономическими показателями.

При использовании экспериментального способа сравнивают величины остаточной дисперсии, рассчитанной для разных моделей:

Задачи по эконометрике

Чем меньше величина остаточной дисперсии Задачи по эконометрике, тем меньше влияние не учтённых в уравнении регрессии факторов и тем лучше уравнение регрессии подходит к исходным данным.

В эконометрическом моделировании следует придерживаться принципа — чем сложнее модель, тем большее количество наблюдений Задачи по эконометрике требуется для её построения.

Сложность модели можно определить показателем Задачи по эконометрике — количеством неизвестных параметров, которые являются множителями при переменной Задачи по эконометрике или при функциях от переменной Задачи по эконометрике.

Например, Задачи по эконометрике для следующих моделей:

Задачи по эконометрике

Соответственно Задачи по эконометрике для моделей:

Задачи по эконометрике

При построении эконометрической модели необходимо придерживаться статистического правила:

Задачи по эконометрике

Таким образом, если Задачи по эконометрике, то Задачи по эконометрике. Следовательно, модель можно строить, имея не менее семи наблюдений. При Задачи по эконометрике соответственно имеем Задачи по эконометрике.

Простейшими эконометрическими моделями являются однофакторные линейные модели парной регрессии. В этом случае предполагается, что между двумя исследуемыми показателями существует линейная корреляционная зависимость. В общем виде однофакторная линейная эконометрическая модель имеет вид:

Задачи по эконометрике

где Задачи по эконометрике — зависимая переменная, Задачи по эконометрике — независимая переменная, Задачи по эконометрике -оцениваемые параметры, Задачи по эконометрике — отклонение линии регрессии от фактических наблюдений.

Чтобы найти уравнение регрессии, необходимо найти неизвестные параметры Задачи по эконометрике и Задачи по эконометрике. Их оценка осуществляется на основании статистических данных (совокупности наблюдений).

При нахождении оценок параметров уравнения регрессии возникает вопрос, каким критерием следует воспользоваться, чтобы найденная прямая наиболее точно отражала зависимость между показателями. В любом случае расчетные значения зависимой переменной, найденные с помощью уравнения регрессии, будут отклоняться истинных наблюдений.

В качестве критерия можно было бы рассматривать сумму этих отклонений. Однако, поскольку одни имеют разные знаки, то при суммировании будут взаимно «погашаться». Чтобы избежать этого, в качестве критерия предлагается рассматривать сумму квадратов этих отклонений. Этот принцип и лежит в основе метода наименьших квадратов (МНК).

Постановка задачи следующая. Уравнение регрессии будем искать в виде:

Задачи по эконометрике

где Задачи по эконометрике — оценки величин Задачи по эконометрике и Задачи по эконометрике. Необходимо подобрать такие значения Задачи по эконометрике, которые минимизируют сумму квадратов отклонении расчетного значения Задачи по эконометрике от наблюдаемого Задачи по эконометрике, т.е. Задачи по эконометрике.

Заметим, что применение МНК возможно при выполнении следующих условий:

  1. Математическое ожидание остатков (ошибок) равно нулю.
  2. Случайные величины Задачи по эконометрике имеют одинаковую дисперсию.
  3. Остатки распределены по нормальному закону с математическим ожиданием, равным нулю и постоянной дисперсией.

Рассмотрим сумму квадратов отклонений как функцию двух переменных Задачи по эконометрике:

Задачи по эконометрике

Для того чтобы найти минимум этой функции, вычислим ее частные производные первого порядка по переменным Задачи по эконометрике и приравняем их к нулю:

Задачи по эконометрике

После преобразований получаем систему нормальных уравнений:

Задачи по эконометрике

Решаем её относительно Задачи по эконометрике и Задачи по эконометрике, и получаем формулы, для вычисления параметров уравнения регрессии:

Задачи по эконометрике

Отметим следующее свойство оценок МНК: линия регрессии всегда проходит через среднюю точку Задачи по эконометрике то есть: Задачи по эконометрике. С учётом этого оценку параметра Задачи по эконометрике можно найти, воспользовавшись соотношением:

Задачи по эконометрике

Преобразовав формулу, имеем:

Задачи по эконометрике

Умножив числитель и знаменатель на Задачи по эконометрике, получаем ещё одну формулу оценки коэффициента регрессии:

Задачи по эконометрике

Рассмотрим экономический смысл этого коэффициента. Если в уравнении регрессии Задачи по эконометрике в качестве аргумента взять Задачи по эконометрике, то получим:

Задачи по эконометрике

Таким образом, коэффициент регрессии в линейной модели показывает, на сколько единиц в среднем изменится зависимая переменная, если независимую переменную увеличить на единицу при прочих неизменных условиях. Значению свободного члена Задачи по эконометрике объяснений не дают.

Возможно эта страница вам будет полезна:

Решение задач по эконометрике

Задача №1.1.

В таблице 1.1 приведены данные за восемь лет об объёме прямых иностранных инвестициях (далее ПИИ) в экономику страны и объёме валового внутреннего продукта (далее ВВП).

Задачи по эконометрике

Необходимо найти уравнение линейной регрессии, отражающее зависимость ВВП от ПИИ.

Решение:

Введём в MS Excel данные. С помощью «Мастера диаграмм» построим точечную диаграмму — корреляционное поле (рис. 1.2).

Задачи по эконометрике

Для упрощения расчётов составим таблицу 1.2.

Задачи по эконометрике

Найдём оценки параметров уравнения регрессии, используя формулы:

Задачи по эконометрике
Задачи по эконометрике

Уравнение регрессии имеет вид:

Задачи по эконометрике

Коэффициент регрессии Задачи по эконометрике показывает, что при увеличении ПИИ на 1 млрд. долларов, ВВП увеличится в среднем на 23,5982 млрд. долл.

Проверка адекватности однофакторной линейной эконометрической модели, значимости её параметров и построение прогнозов

Следующий этап эконометрического моделирования заключается в оценке качества полученного уравнения и его параметров.

Для оценки тесноты и направления связи между двумя показателями используется коэффициент парной корреляции. Его можно вычислить по формуле:

Задачи по эконометрике

где Задачи по эконометрике — ковариация, а Задачи по эконометрике — дисперсия Задачи по эконометрике и Задачи по эконометрике соответственно.

Для вычисления коэффициента парной корреляции можно также использовать преобразованную формулу:

Задачи по эконометрике

В отличие от коэффициента регрессии, коэффициент корреляции является показателем относительной меры связи между двумя показателями. Значения коэффициента корреляции всегда находятся в пределах:

Задачи по эконометрике

Положительное значение коэффициента свидетельствует о прямой связи, т.е. с увеличением независимой переменной Задачи по эконометрике, увеличивается в среднем и значение Задачи по эконометрике. Если коэффициент корреляции отрицательный, то связь обратная.

Если модуль коэффициента парной корреляции близок к 1 Задачи по эконометрике, то линейная связь между показателями тесная. Если же коэффициент близок к 0 Задачи по эконометрике, то связь практически отсутствует.

Если Задачи по эконометрике, то между случайными величинами Задачи по эконометрике и Задачи по эконометрике существует линейная функциональная зависимость. Коэффициент корреляции равен нулю, когда случайные величины Задачи по эконометрике и Задачи по эконометрике независимы

В случае, когда Задачи по эконометрике и Задачи по эконометрике, то между случайными величинами Задачи по эконометрике и Задачи по эконометрике существует корреляционная зависимость. Причём, чем ближе значение коэффициента по модулю к единице, тем теснее линейная связь между показателями.

Таким образом, коэффициент парной корреляции характеризует тесноту и направление линейной связи между показателями. Следует отметить, что знак коэффициента корреляции всегда совпадает со знаком коэффициента регрессии.

Связь между коэффициентом парной корреляции Задачи по эконометрике и коэффициентом регрессии Задачи по эконометрике выражается следующей формулой:

Задачи по эконометрике

Ещё одним показателем адекватности линейной модели является коэффициент детерминации Задачи по эконометрике. Он определяется по формуле:

Задачи по эконометрике

где Задачи по эконометрике — общая дисперсия, а Задачи по эконометрике — дисперсия, объясняемая регрессией.

Эти показатели вычисляются по формулам:

Задачи по эконометрике

Таким образом, коэффициент детерминации — это часть дисперсии, которая объясняет регрессию. Величина коэффициента детерминации изменяется в пределах от нуля до единицы:

Задачи по эконометрике

Если значение Задачи по эконометрике близко к единице, то модель адекватна, если близко к нулю, то неадекватна.

Кроме того, коэффициент детерминации показывают, какая часть вариации (изменения) зависимой переменной Задачи по эконометрике объясняется вариацией независимой переменной Задачи по эконометрике. Для определения доли вариации Задачи по эконометрике за счет неучтенных в модели факторов рассчитывается т.н. коэффициент остаточной детерминации:

Задачи по эконометрике

Рассмотренные выше коэффициенты парной корреляции и детерминации, как показатели адекватности модели, имеют между собой связь, которая выражается формулой:

т.е. коэффициент детерминации равен квадрату коэффициента корреляции.

Осуществляется также проверка значимости коэффициента корреляции, которая подразумевает проверку статистической гипотезы Задачи по эконометрикеЗадачи по эконометрике против альтернативной гипотезы Задачи по эконометрике, т.е. проверяется гипотеза, заключающаяся в том, что случайные величины Задачи по эконометрике и Задачи по эконометрике не коррелируют друг с другом.

Для проверки гипотезы рассчитывается Задачи по эконометрике -статистика Стьюдента:

Задачи по эконометрике

где Задачи по эконометрике — число степеней свободы.

Для заданного уровня значимости (допустимой вероятности ошибки) Задачи по эконометрике и числа степеней свободы Задачи по эконометрике находится табличное значение критерия. Если Задачи по эконометрике, то гипотеза Задачи по эконометрике об отсутствии корреляционной связи между переменными отвергается, в противном случае — принимает.

Для проверки значимости параметров уравнения парной регрессии Задачи по эконометрике и Задачи по эконометрике также используется Задачи по эконометрике-статистика Стьюдента. Расчётные значения критерия можно найти по формулам:

Задачи по эконометрике

В знаменателях этих дробей стоят случайные ошибки параметров эконометрической модели:

Задачи по эконометрике

где Задачи по эконометрике — несмещенная оценка дисперсии остатков.

Найденные расчётные значения берут по модулю и сравнивают с табличным Задачи по эконометрике, которое определено по уровню значимости Задачи по эконометрике и числу степеней свободы Задачи по эконометрике. Если модуль расчётного значения больше табличного, то соответствующий параметр является значимым. В противном случае он не значим.

Замечание 1.1. Требование значимости коэффициента регрессии Задачи по эконометрике является обязательным. Свободный член Задачи по эконометрике носит вспомогательный характер. Его незначимость по критерию Стьюдента не является критичным для эконометрической модели.

Для проверки адекватности эконометрической модели используют Задачи по эконометрике-критерий Фишера. Расчётное значение критерия находится по формуле:

Задачи по эконометрике

Данное число сравнивается с табличным значением распределения Фишера, найденного по заданному уровню значимости Задачи по эконометрике и числам степеней свободы Задачи по эконометрике. Если расчётное значение Задачи по эконометрике-критерия превышает табличное, то нулевая гипотеза о равенстве нулю коэффициента регрессии отвергается, и модель признаётся адекватной. В противном случае — гипотеза принимается.

Возможно эта страница вам будет полезна:

Примеры решения задач по эконометрике

Задача №1.2.

По данным примера 1.1 найти значение коэффициентов парной корреляции и детерминации. Проверить значимость коэффициента корреляции, параметров регрессии и значимость модели в целом при уровне значимости Задачи по эконометрике = 0,05.

Согласно таблице 1.1, объём ПИИ в последнем временном периоде составлял Задачи по эконометрике млрд. долл. Предполагается, что прогнозное значение ПИИ в следующем году составит 120% от Задачи по эконометрике, т.е. Задачи по эконометрике млрд. долл. Требуется построить точечный и интервальный прогнозы для объёма ВВП на следующий год.

Решение:

Рассчитаем линейный коэффициент корреляции:

Задачи по эконометрике

Близость коэффициента корреляции к единице указывает на тесную линейную связь между признаками. Коэффициент детерминации

Задачи по эконометрике

показывает, что уравнением регрессии объясняется 98,41% дисперсии результативного признака, а на долю прочих факторов приходится 1,59%.

Проверим значимость коэффициента парной корреляции по критерию Стьюдента. Расчётное значение критерия равно:

Задачи по эконометрике

По уровню значимости Задачи по эконометрике и количеству степеней свободы Задачи по эконометрике определим табличное значение критерия Задачи по эконометрике.

Расчётное значение, взятое по модулю, больше табличного. Следовательно, коэффициент корреляции является значимым с надёжностью не менее 95% Задачи по эконометрике.

Для оценки статистической значимости параметров регрессии рассчитаем Задачи по эконометрике-критерий Стьюдента. Вычислим случайные ошибки параметров и фактические значения Задачи по эконометрике-статистик:

Задачи по эконометрике

Табличное значение Задачи по эконометрике-критерия Стьюдента при Задачи по эконометрике и числе степеней свободы Задачи по эконометрике определено выше и составляет Задачи по эконометрике.

Модули обоих расчётных значения больше табличного, поэтому признаём статистическую значимость параметров регрессии с надёжностью не менее 95%.

Оценим качество уравнения регрессии в целом с помощью Задачи по эконометрике -критерия Фишера. Рассчитаем фактическое значение Задачи по эконометрике -критерия:

Задачи по эконометрике

Количество степеней свободы для критерия Фишера Задачи по эконометрике, Задачи по эконометрике. При уровне значимости Задачи по эконометрике табличное значение критерия равно:

Задачи по эконометрике

Так как Задачи по эконометрике, то найденная эконометрическая модель является статистически значимой с надёжностью не менее 95%.

Для вычисления точечного прогноза объёма ВВП достаточно в уравнение регрессии подставить предполагаемый объём ПИИ, т.е. 30,72 млрд. долл. Точечный прогноз для ВВП будет следующим:

Задачи по эконометрике

Ошибка прогноза составляет:

Задачи по эконометрике

Интервальный прогноз для Задачи по эконометрике оценивают по формуле Задачи по эконометрике.

Поэтому доверительный интервал будет следующим:

Задачи по эконометрике

Замечание 1.2. Эконометрическую модель можно считать достоверной, если построенные с помощью неё прогнозы отклоняются от фактических данных не более, чем на 10%. Модель из Задача 1.1 была построена по статистическим данным 2007-2014 гг. Фактические данные за 2015 г. составили Задачи по эконометрике млрд. долл. и Задачи по эконометрике млрд. долл. Подставив в найденное уравнение регрессии Задачи по эконометрике, мы оценим теоретическое (прогнозное) значение у, т.е.

Задачи по эконометрике

Абсолютное отклонение составит:

Задачи по эконометрике

Относительное отклонение:

Задачи по эконометрике

Так как Задачи по эконометрике, то построенную модель парной регрессии можно считать адекватной и пригодной для краткосрочных прогнозов.

Возможно эта страница вам будет полезна:

Курсовая работа по эконометрике

Оценивание параметров в однофакторных нелинейных эконометрических моделях

Необходимость построения нелинейных моделей парной регрессии приводит к некоторому усложнению преобразований данных и вычислений. Однако при современном развитии информационных технологий эти трудности вполне преодолимы.

Заказать работу по эконометрике

Задача №1.3.

В таблице 1.3 приведены данные по десяти однотипным заводам, специализирующихся на ремонте шахтного оборудования в Донецком регионе. Годовой объём выпуска продукции Задачи по эконометрике (млн. руб.) зависит от фонда оплаты труда Задачи по эконометрике (млн. руб.).

Задачи по эконометрике

Требуется:

1) средствами MS Excel построить нелинейные уравнения парной регрессии Задачи по эконометрике от Задачи по эконометрике;

2) выбрать лучшую модель.

Решение:

Принято различать два класса уравнений нелинейных регрессий. Первый из них включает нелинейные уравнения относительно объясняющих переменных, но линейные по оцениваемым параметрам.

К ним, например, относятся: многочлены (полиномы) различных степеней

Задачи по эконометрике

и т.д.; равносторонняя гипербола

Задачи по эконометрике

полулогарифмическая функция

Задачи по эконометрике

Регрессии первого класса приводятся к линейному виду заменой переменных. Дальнейшая оценка параметров производится с помощью МНК.

Например, парабола второй степени

Задачи по эконометрике

приводится к линейному виду с помощью замены:

Задачи по эконометрике

В результате приходим к двухфакторному уравнению

Задачи по эконометрике

оценка параметров которого осуществляется при помощи МНК.

Равносторонняя гипербола

Задачи по эконометрике

может быть использована для характеристики связи удельных расходов сырья, материалов, топлива от объёма выпускаемой продукции, времени обращения товаров от величины товарооборота, процента прироста заработной платы от уровня безработицы (кривая Филипса), расходов на непродовольственные товары от доходов или общей суммы расходов (кривые Энгеля) и в других случаях. Гипербола приводится к линейному уравнению заменой: Задачи по эконометрике. Аналогичным образом приводятся к линейному виду зависимости Задачи по эконометрике, Задачи по эконометрике и др.

Второй класс нелинейных уравнений — регрессии, нелинейные по оцениваемым параметрам. К ним, например, относятся: степенная Задачи по эконометрике; показательная Задачи по эконометрике; экспоненциальная Задачи по эконометрике. Эти модели приводятся к линейному виду логарифмированием и заменой переменных.

Покажем, как это делается на примере степенной функции Задачи по эконометрике:

Задачи по эконометрике

где

Задачи по эконометрике

Таким образом, мы применяем МНК к преобразованным данным, а затем потенцированием (обратная замена) находим искомое уравнение.

Широкое использование степенной функции связано с тем, что параметр Задачи по эконометрике в ней имеет чёткое экономическое истолкование — он является коэффициентом эластичности.

Такие задачи удобно решать в MS Excel. Для этого нужно выполнить следующую последовательность действий:

• ввести экспериментальные данные в столбцы (или построчно);

• на основании введённых данных построить точечную диаграмму;

• активизировать данные диаграммы, щелкнув по точкам левой кнопкой «мыши»;

• в пункте меню «Диаграмма» выбрать опцию «Добавить линию тренда…»;

• в пункте меню «Тип» выбрать «Полиномиальная (степень 2-я)» или «Логарифмическая», или «Степенная», или «Экспоненциальная»;

• в пункте «Параметры» — «Показывать уравнение на диаграмме» и «Поместить на диаграмму величину достоверности аппроксимации (R1)».

Для величины достоверности аппроксимации выполняется неравенство: Задачи по эконометрике. Формула расчёта Задачи по эконометрике (см. справку MS Excel) содержит сумму квадратов отклонений. Чем ближе Задачи по эконометрике к единице, тем лучше модель описывает фактические данные.

На рис. 1.3-1.6 поместим корреляционное поле, соответствующую линию регрессии, уравнение регрессии и величину достоверности аппроксимации Задачи по эконометрике.

Задачи по эконометрике
Задачи по эконометрике

Наибольшую величину достоверности аппроксимации Задачи по эконометрике имеет полиномиальная модель второй степени (рис. 1.4). Поэтому, на первый взгляд, эту модель можно признать лучшей.

Однако ранее было приведено статистическое правило:

Задачи по эконометрике

Полиномиальная модель второй степени

Задачи по эконометрике

имеет два неизвестных параметра Задачи по эконометрике и Задачи по эконометрике, которые являются множителями при переменной Задачи по эконометрике или при функциях от переменной Задачи по эконометрике. Поэтому Задачи по эконометрике и должно выполняться условие Задачи по эконометрике.

Т.к. в Задаче 1.3 имеем Задачи по эконометрике, то признать данную модель лучшей было бы некорректно. Отвергаем полиномиальную модель второй степени и рассматриваем остальные.

Среди оставшихся моделей наибольшую величину достоверности аппроксимации Задачи по эконометрике имеет экспоненциальная модель (рис. 1.6):

Задачи по эконометрике

Введём замену Задачи по эконометрике и запишем модель в виде, который используется в MS Excel:

Задачи по эконометрике

Логарифмируя обе части уравнения, получим

Задачи по эконометрике

Следовательно, экспоненциальная модель имеет один неизвестный параметр Задачи по эконометрике, который является множителем при переменной Задачи по эконометрике. Поэтому Задачи по эконометрике и условие Задачи по эконометрике выполняется,т.к. Задачи по эконометрике.

Значит, лучшей моделью является экспоненциальная модель (рис. 1.6),

Задачи по эконометрике

Задача 1.3 выполнена.

Заканчивая эту главу, заметим, что, эконометрические модели парной регрессии описаны во многих учебниках и учебных пособиях. Несмотря на свою простоту, эти модели весьма востребованы в практических задачах экономики.

Возможно эта страница вам будет полезна:

Лабораторная работа по эконометрике

Множественная регрессия в эконометрических задачах. Производственная функция Кобба-Ду гласа в эконометрическом моделировании

Американский экономист Пол Дуглас в 30-е годы XX в. наблюдал за данными перерабатывающей промышленности США на протяжении двадцати лет и заметил зависимость между экономическими показателями. Он не сумел определить функцию, описывающую эту зависимость, и обратился в 1927 г. к математику Чарльзу Коббу, который предложил следующую функцию:

Задачи по эконометрике

где Задачи по эконометрике — объём выпущенной продукции; Задачи по эконометрике — затраты труда; Задачи по эконометрике — затраты производственных фондов; Задачи по эконометрике и Задачи по эконометрике — неизвестные параметры модели, определяемые с помощью МНК на основе эмпирических данных.

Так появилась производственная функция Кобба-Дугласа, принадлежащая к наиболее известным производственным функциям, широко применяемым в экономических исследованиях.

С точки зрения эконометрии эта функция — не что иное, как двух-факторная нелинейная регрессионная модель. С точки зрения математики — мультипликативная степенная функция.

Для определения неизвестных параметров этой модели прологарифмируем левую и правую части функции:

Задачи по эконометрике

Введём замены

Задачи по эконометрике

и получим линейную модель

Задачи по эконометрике

С помощью МНК будем искать параметры Задачи по эконометрике и Задачи по эконометрике Система нормальных уравнений имеет вид:

Задачи по эконометрике

Продемонстрируем на конкретных данных этапы построения производственной функции Кобба-Дугласа.

Возможно эта страница вам будет полезна:

Помощь по эконометрике

Задача №2.1.

Финансово-промышленная группа «Росслад» владеет шестнадцатью заводами по производству сахара. Имеются данные (табл. 9.3) прошлого года о выпуске продукции у (млн. руб.), затратах труда Задачи по эконометрике (млн. руб.) и затратах производственных фондов (ПФ) Задачи по эконометрике (млн. руб.).

Задачи по эконометрике

Требуется:

A) Построить производственную функцию Кобба-Дугласа. Б) Рассчитать характеристики:

1) среднюю производительность труда;

2) среднюю фондоотдачу;

3) предельную производительность труда;

4) предельную фондоотдачу;

5) эластичность выпуска продукции по затратам труда;

6) эластичность выпуска продукции по ПФ;

7) потребность в ресурсах труда;

8) потребность в ПФ;

9) фондовооружённость труда;

10) предельную норму замещения затрат труда производственными фондами;

11) эластичность замещения ресурсов.

B) Найти прогноз выпуска Задачи по эконометрике для заданных значений Задачи по эконометрике. руб. и Задачи по эконометрике. руб.

Решение:

А) Составим расчётную таблицу 2.2.

Задачи по эконометрике

Для наших данных система нормальных уравнений будет следующей:

Задачи по эконометрике

Введём в рассмотрение матрицы

Задачи по эконометрике

Запишем систему в матричном виде

Задачи по эконометрике

Согласно методу обратной матрицы

Задачи по эконометрике

Обратную матрицу находим с помощью Microsoft Excel. Напомним, что операции с матрицами желательно завершать нажатием клавиши «F2» и «Ctrl+Shift+Enter». Итак, имеем:

Задачи по эконометрике

Так как

Задачи по эконометрике

Значения неизвестных параметров:

Задачи по эконометрике

Производственная функция Кобба-Дугласа имеет вид:

Задачи по эконометрике

Б) Рассчитаем основные характеристики производственной функции: 1) средняя производительность труда равна:

Следовательно, с увеличением затрат труда Задачи по эконометрике (при неизменных затратах ПФ Задачи по эконометрике) средняя производительность труда снижается. И, наоборот, увеличение затрат ПФ (при неизменных затратах труда) ведёт к росту средней производительности труда;
2) средняя фондоотдача равна:

Задачи по эконометрике

Таким образом, с увеличением затрат ПФ (при неизменных затратах труда) средняя фондоотдача снижается. Увеличение же затрат труда (при неизменных затратах ПФ) ведёт к росту средней фондоотдачи; 3) предельная производительность труда:

Задачи по эконометрике

Следовательно, с увеличением затрат труда (при неизменных затратах ПФ) предельная производительность труда снижается. Наоборот, увеличение затрат ПФ (при неизменных затратах труда) ведёт к росту предельной производительности труда;

4) предельная фондоотдача:

Задачи по эконометрике

Таким образом, с увеличением затрат ПФ (при неизменных затратах труда) предельная фондоотдача снижается. Увеличение же затрат труда (при неизменных затратах ПФ) ведёт к росту предельной фондоотдачи; 5) эластичность выпуска продукции по затратам труда:

Задачи по эконометрике

Данный показатель указывает на то, что при увеличении затрат труда Задачи по эконометрике на 1% выпуск продукции у предельно увеличивается на 0,2743%; 6) эластичность выпуска продукции по ПФ:

Задачи по эконометрике

При увеличении ПФ на 1% выпуск продукции может предельно увеличиться на 0,6892%;

7) производственная функция позволяет рассчитать потребность в одном из ресурсов при заданном объеме выпуска продукции Задачи по эконометрике и заданной величине другого ресурса.

Потребность в ресурсах труда:

Задачи по эконометрике

8) потребность в ПФ:

Задачи по эконометрике

9) производственная функция позволяет исследовать вопросы соотношения, замещения, взаимодействия ресурсов. В частности, определяется важный экономический показатель — фондовооружённость труда:

Задачи по эконометрике

10) взаимодействующие в рамках производственной функции ресурсы могут замещать друг друга. Предельная норма замещения затрат труда Задачи по эконометрике производственными фондами Задачи по эконометрике равна:

Задачи по эконометрике

Предельная норма замещения зависит не только от параметров Задачи по эконометрике и Задачи по эконометрике производственной функции Кобба-Дугласа, но и от соотношения объёмов ресурсов. Знак «минус» означает, что при фиксированном объёме выпуска продукции Задачи по эконометрике необходимо при уменьшении одного ресурса увеличивать другой.

11) влияние соотношения объемов ресурсов на предельную норму замещения Задачи по эконометрике находит свое выражение в эластичности замещения ресурсов. Этот показатель определяется как отношение относительных приращений фондовооружённости труда и предельной нормы замещения ресурсов:

Задачи по эконометрике

Эластичность замещения ресурсов для производственной функции Кобба-Дугласа всегда равна единице. Т.е. изменению фондовооружённости труда на 1% соответствует изменение предельной нормы замещения также на 1%.

В) Найдём точечный прогноз выпуска продукции для заданных значений

Задачи по эконометрике
Задачи по эконометрике

Задача 2.1 решена полностью.

Многофакторные линейные эконометрические модели

Ввиду чёткой интерпретации результатов наиболее широко в множественной регрессии используется линейная функция.

Рассмотрим многофакторную линейную эконометрическую модель:

Задачи по эконометрике

Ей соответствует линейное уравнение множественной регрессии

Задачи по эконометрике

Параметры, являющиеся множителями при независимых переменных, называются коэффициентами «чистой» регрессии. Они характеризуют среднее изменение результата с изменением соответствующего фактора на единицу при неизмененном значении других факторов.

Классический подход к оцениванию параметров линейной модели множественной регрессии основан на МНК:

Задачи по эконометрике

Возможно эта страница вам будет полезна:

Решение задач по эконометрике в Excel

Задача №2.2.

Открытое акционерное общество «РосСельхозХолдинг» более десяти лет производит пшеницу в своих тридцати агроцехах, расположенных в разных областях Российской Федерации. Имеются данные прошлого года (табл. 9.5) о прибыли предприятия Задачи по эконометрике (млн. руб.), среднегодовом

удельном весе сельскохозяйственных рабочих в составе агроцеха Задачи по эконометрике Задачи по эконометрике, среднегодовой численности персонала Задачи по эконометрике (тыс. чел.), среднесуточном времени простоя техники в рабочее время Задачи по эконометрике (часы), среднемесячных выплатах за вредность труда на одного работника Задачи по эконометрике (руб.), среднегодовой текучести кадров Задачи по эконометрике (%).

Задачи по эконометрике

Предполагая, что между переменной Задачи по эконометрике и независимыми переменнымиЗадачи по эконометрике существует линейная зависимость, требуется:

  1. Найти линейное уравнение множественной регрессии;
  2. С помощью алгоритма пошаговой регрессии построить эконометрическую модель с максимальным числом значимых коэффициентов при уровне значимости 0,05.
  3. Построить точечный и интервальный прогнозы для Задачи по эконометрике при допущении, что средние показатели по независимым переменным будут превышены на 5%.

Решение:

В Microsoft Excel имеется пункт меню «Сервис», который содержит надстройку «Анализ данных». В нём выбираем инструмент анализа «Регрессия». Вводим входной интервал для у и входной интервал для Задачи по эконометрике. Т.к. в условии задан уровень значимости Задачи по эконометрике, то выбираем уровень надёжности 95% Задачи по эконометрике. В параметрах вывода отмечаем «Новый рабочий лист» и жмём «ОК». Результаты вычислений, округлённые до четвёртого знака приведены на рис. 2.1.

Задачи по эконометрике
  • Столбец «Коэффициенты» (рис. 2.1) содержит найденные параметры уравнения регрессии. Т.о. линейная пятифакторная регрессионная модель имеет вид:
Задачи по эконометрике

По коэффициентам регрессии можно давать объяснения. Например, если текучесть кадров Задачи по эконометрике увеличится на 1%, то прибыль предприятия снизится в среднем на 0,1714 млн. руб. При этом значения переменных Задачи по эконометрикеЗадачи по эконометрике должны оставаться неизменными. Значение свободного члена Задачи по эконометрике не объясняют.

  • Прокомментируем данные отчета на рис. 9.8.

Множественный коэффициент корреляции Задачи по эконометрике характеризует тесноту линейной связи рассматриваемого набора факторов Задачи по эконометрике с исследуемым признаком Задачи по эконометрике. Границы изменения коэффициента множественной корреляции от 0 до 1. Чем ближе его значение к 1 (в нашем примере Задачи по эконометрике), тем теснее линейная связь результативного признака со всем набором исследуемых факторов.

Множественный коэффициент детерминации Задачи по эконометрике, то дисперсия (т.е. разброс) прибыли у на 99,48% объясняется регрессией, т.е. зависимостью от показателей Задачи по эконометрике. Величина Задачи по эконометрике (т.е. 0,52%) характеризует долю дисперсии Задачи по эконометрике, вызванную влиянием не учтённых в модели факторов.

В разделе «Дисперсионный анализ» (рис. 9.8) на пересечении строки «Остаток» и столбца «MS» находится несмещённая оценка дисперсии остатков Задачи по эконометрике. Извлекая квадратный корень, получим среднее квадратическое отклонение — стандартную ошибку Задачи по эконометрике. В следующей строке располагается число наблюдений Задачи по эконометрике.

Раздел «Дисперсионный анализ» называют ANOVA-таблицей (analysis of variance). Она содержит обозначение Задачи по эконометрике (degree of freedom) — число степеней свободы. В уравнение регрессии входит Задачи по эконометрике независимых переменных (строка «Регрессия»), в строке «Остаток» содержится Задачи по эконометрике, что в сумме (строка «Итого») составляет Задачи по эконометрике.

Значимость уравнения множественной регрессии в целом определяется с помощью статистического Задачи по эконометрике -критерия Фишера. Вероятность того, что Задачи по эконометрике будет меньше фактического значения Задачи по эконометрике, можно оценить по формуле

Задачи по эконометрике

Для нашей задаче:

Задачи по эконометрике

Эту вероятность сравниваем с заданным уровнем значимости Задачи по эконометрике. Так как Задачи по эконометрике, т.е. вероятность ошибки не превысила 5%, то пятифак-торное уравнение регрессии значимо с надёжностью не менее 95%.

Последний раздел отчёта на рис. 9.8 содержит коэффициенты регрессии

Задачи по эконометрике
Задачи по эконометрике

В столбце «Стандартная ошибка» расположены

Задачи по эконометрике
Задачи по эконометрике

Для проверки значимости коэффициентов регрессии применяют статистический Задачи по эконометрике-критерий Стьюдента. Пусть Задачи по эконометрике — случайная величина, имеющая распределение Стьюдента с числом степеней свободы Задачи по эконометрике. Вычисляются фактические значения Задачи по эконометрике -критерия Стьюдента:

Задачи по эконометрике

Они помещены в столбце «Задачи по эконометрике-статистика»:

Задачи по эконометрике
Задачи по эконометрике

Заметим, что свободный член Задачи по эконометрике обычно не проверяется на статистическую значимость. Вероятность того, что Задачи по эконометрике будет меньше фактического значения Задачи по эконометрике, можно оценить по формуле

Задачи по эконометрике

Для нашей задачи (столбец «Задачи по эконометрике-Значение») имеем:

Задачи по эконометрике

Эти вероятности сравниваем с заданным уровнем значимости Задачи по эконометрике. Так как

Задачи по эконометрике

то оценки коэффициентов регрессии

Задачи по эконометрике

не являются значимыми. Т.к.

Задачи по эконометрике

то оценки коэффициентов регрессии

Задачи по эконометрике

значимы с надёжностью не менее 95%.

Среди незначимых оценок наибольшая вероятность ошибки

Задачи по эконометрике

поэтому переменная Задачи по эконометрике должна быть исключена из модели. Эта процедура повторяется до тех пор, пока все оценки коэффициентов регрессии не будут статистически значимыми.

Такой подход называют алгоритмом пошагового регрессионного анализа. После завершения алгоритма мы получим уравнение регрессии с максимальным числом значимых коэффициентов.

На рис. 9.8 в столбцах «Нижние 95%» и «Верхние 95%» содержит интервальные оценки коэффициентов регрессии. Т.к. среди этих параметров оказались незначимые, то нет смысла давать объяснения их интервальным оценкам. Это будет сделано после построения окончательной модели.

Повторяем те же действия, что и в начале решения задачи. В Microsoft Excel в пункте меню «Сервис» выбираем пакет прикладных программ «Анализ данных». Пользуемся инструментом анализа «Регрессия». Вводим входной интервал для у и входной интервал для Задачи по эконометрике при уровне надёжности 95%. Результаты вычислений округляем до четвёртого знака и приводим отчет на рис. 2.2.

Задачи по эконометрике

Получена линейная четырёхфакторная эконометрическая модель:

Задачи по эконометрике

Т.к. множественный коэффициент корреляции Задачи по эконометрике близок к 1, то наблюдается высокая теснота линейной связи факторов Задачи по эконометрике с исследуемым признаком Задачи по эконометрике. Т.к. множественный коэффициент детерминации Задачи по эконометрике, то дисперсия прибыли Задачи по эконометрике на 99,47% объясняется найденной регрессией. Величина Задачи по эконометрике (т.е. 0,53%) характеризует долю дисперсии у, вызванную влиянием не учтённых в модели факторов.

Фактическое значение критерия Фишера составляет Задачи по эконометрике. Оценена вероятность Задачи по эконометрике. Эту вероятность сравниваем с заданным уровнем значимости Задачи по эконометрике. Т.к. Задачи по эконометрике, то четырёхфакторное уравнение регрессии значимо с надёжностью не менее 95%.

Найденная вероятность Задачи по эконометрике больше уровня значимости Задачи по эконометрике. Оценка коэффициента регрессии Задачи по эконометрике не является значимой, поэтому переменная Задачи по эконометрике должна быть исключена из модели.

Вводим входной интервал для Задачи по эконометрике и входной интервал для Задачи по эконометрике при уровне надёжности 95%. Округляем данные до четвёртого знака и приводим отчёт на рис. 2.3.

Задачи по эконометрике

Линейная трёхфакторная эконометрическая модель имеет вид:

Задачи по эконометрике

Отчет на рис. 9.10 содержит следующую информацию. Множественный коэффициент корреляции Задачи по эконометрике близок к 1. Следовательно, наблюдается высокая теснота линейной связи факторов Задачи по эконометрике с признаком Задачи по эконометрике. Множественный коэффициент детерминации Задачи по эконометрике. Значит, дисперсия у на 99,46% объясняется найденной регрессией. Величина Задачи по эконометрике (т.е. 0,54%) характеризует долю дисперсии у, вызванную влиянием не учтённых в модели факторов.

Фактическое значение критерия Фишера Задачи по эконометрике. Получена вероятность Задачи по эконометрике. Т.к. Задачи по эконометрике, то трёхфакторное уравнение регрессии значимо с надёжностью не менее 95%.

Столбец «Задачи по эконометрике -Значение» содержит вероятности для коэффициентов регрессии

Задачи по эконометрике

(свободный член Задачи по эконометрике не анализируется). Все вероятности оказалась меньше уровня значимости Задачи по эконометрике. Следовательно, все оценки коэффициентов регрессии значимы.

Алгоритм пошагового регрессионного анализа завершён. Построенная трёхфакторная модель — это уравнение регрессии с максимальным числом Задачи по эконометрике значимых коэффициентов.

В столбцах «Нижние 95%» и «Верхние 95%» содержит интервальные оценки параметров уравнения регрессии. Они вычислены по данным столбцов «Коэффициенты» и «Стандартная ошибка»:

Задачи по эконометрике

Численные значения доверительных интервалов объясняют следующим образом. Например, точеная оценка Задачи по эконометрике с надёжностью не менее 95% может колебаться от 5,7325 до 8,8249.

  • Построим точечный и интервальный прогнозы для прибыли предприятия v при допущении, что средние показатели по Задачи по эконометрике будут превышены на 5%.

Так как

Задачи по эконометрике

то предполагаемые значения:

Задачи по эконометрике

Вектор предполагаемых значений:

Задачи по эконометрике

Точечный прогноз для среднего значения прибыли агроцеха:

Задачи по эконометрике

Вычислим дисперсию прогноза:

Задачи по эконометрике

Извлекая квадратный корень, найдём среднеквадратическую ошибку прогноза Задачи по эконометрике.

Доверительный интервал для среднего значения (математического ожидания) прогноза зависимой переменной находим по формуле:

Задачи по эконометрике

Рассчитаем дисперсию и среднее квадратическое отклонение индивидуального прогноза:

Задачи по эконометрике

Доверительный интервал для индивидуального значения прогноза:

Задачи по эконометрике

Задачи 2.2 выполнено полностью.

Возможно эта страница вам будет полезна:

Системы эконометрических уравнений

Границы применимости классического метода наименьших квадратов в эконометрнческом моделировании

Рассмотрим многофакторную линейную эконометрическую модель:

Задачи по эконометрике

При построении такой модели предполагают, что выполняются следующие гипотезы.

  • Спецификация модели:
Задачи по эконометрике

где Задачи по эконометрике — номер наблюдения.

  • Числовые значения независимых переменных Задачи по эконометрике являются детерминированными (не случайными) величинами. Векторы
Задачи по эконометрике

являются линейно независимыми в пространстве Задачи по эконометрике. 3. Случайные величины Задачи по эконометрике удовлетворяют условиям. Их математические ожидания равны нулю:

Задачи по эконометрике

Дисперсии:

Задачи по эконометрике

Причём значения математических ожиданий и дисперсий ошибок не зависят от номера наблюдений Задачи по эконометрике.

  • При Задачи по эконометрике ковариации ошибок равны нулю:
Задачи по эконометрике

Т.е. для разных наблюдений имеет место статистическая независимость (некоррелированность) ошибок.

  • (дополнительная гипотеза). Ошибки Задачи по эконометрике являются нормально распределёнными случайными величинами со средним 0 и дисперсией Задачи по эконометрике, т.е.
Задачи по эконометрике

При выполнении гипотез 1 — 5 эконометрическая модель называется нормальной линейной регрессионной моделью.

Важнейшую роль в эконометрическом анализе играет следующая теорема, формулировка которой приводится без доказательства.

Теорема Гаусса-Маркова. Предположим, что для линейной модели множественной регрессии выполняются гипотезы 1 — 4. Тогда оценки коэффициентов регрессии Задачи по эконометрике, найденные с помощью МНК, являются наиболее эффективными (в смысле наименьшей дисперсии) среди всех линейных несмещённых оценок.

Заметим, что при невыполнении отдельных гипотез теорема Гаусса-Маркова становится неприменимой. Следовательно, и классический МНК не будет давать достоверных результатов.

Нарушение условия линейной независимости векторов Задачи по эконометрике (гипотеза

2) приводит к нежелательному явлению, называемому мультиколлинеар-ностью. Условие независимости дисперсии ошибок от номера наблюдения (гипотеза 3) называется гомоскедастичностью. Нарушение данного условия называют гетероскедастичностью. Невыполнение гипотезы 4 называется автокорреляцией остатков.

В эконометрическом моделировании надо уметь выявлять эти нежелательные явления и устранять их. При невозможности устранения — научиться моделировать в условиях невозможности применения классического МНК.

Мультиколлинеарность в массиве независимых переменных эконометрической модели

Мультиколлинеарность означает существование тесной линейной зависимости, или сильной корреляции, между двумя или более объясняющими переменными.

Она негативно влияет на количественные характеристики эконометриче-ской модели, или делает её построение вообще невозможным.

Задача №2.3.

На производительность труда однотипных малых предприятий влияет ряд факторов, среди которых: удельный вес рабочих на предприятии Задачи по эконометрике; премии и другие вознаграждения на одного работника Задачи по эконометрике (ден. ед.); оборачиваемость нормируемых оборотных средств Задачи по эконометрике (дни). Исследовать на мультиколлинеарность переменные Задачи по эконометрике. При наличии мультиколлинеарности предложить меры по её устранению. Статистические данные по десяти предприятиям приведены в табл. 2.4. Уровень значимости Задачи по эконометрике.

Задачи по эконометрике

Решение:

Исследуем мультпколлинеарность в массиве независимых переменных при помощи алгоритма Фаррара-Глобера. Расчёты проведём в Microsoft Excel, округляя числа до четвёртого знака после запятой.

  • Нахождение корреляционной матрицы выполним с помощью встроенной функции «Корреляция» (Сервиз—>Анализ данных —> Корреляция), которая позволяет находить коэффициенты корреляции более чем двух факторов:
Задачи по эконометрике

Её определитель: Задачи по эконометрике Он вычислен с помощью функции МОПРЕД().

При Задачи по эконометрике имеется полная мультиколлинеарность, а если Задачи по эконометрике, то мультиколлинеарность отсутствует. В нашем случае Задачи по эконометрике, поэтому продолжим исследование на наличие мультиколлинеарности.

  • Определим фактическое значение критерия «хи»-квадрат Пирсона:
Задачи по эконометрике

Фактическое значение критерия Задачи по эконометрике сравнивается с табличным значением при Задачи по эконометрике степенях свободы и уровне значимости Задачи по эконометрике: Задачи по эконометрике Т.к. Задачи по эконометрике то в массиве объясняющих переменных существует мультиколлинеарность.

  • С помощью функции МОБР() определим обратную матрицу:
Задачи по эконометрике
  • Вычисление Задачи по эконометрике -критериев Фишера осуществляем по формуле
Задачи по эконометрике

где Задачи по эконометрике — диагональные элементы матрицы Задачи по эконометрике. Имеем

Задачи по эконометрике

Фактические значения критериев сравниваются с табличным Задачи по эконометрике при Задачи по эконометрике степенях свободы и уровне значимости Задачи по эконометрике: Задачи по эконометрике

Т.к. Задачи по эконометрике, то независимые переменные Задачи по эконометрике и Задачи по эконометрике мультиколлинеарны с другими.

  • Находим частные коэффициенты корреляции по формуле
Задачи по эконометрике

где Задачи по эконометрике — элемент матрицы Задачи по эконометрике, содержащийся в Задачи по эконометрике-ой строке и Задачи по эконометрике-ом столбце; Задачи по эконометрике и Задачи по эконометрике — диагональные элементы матрицы Задачи по эконометрике. Получаем:

Задачи по эконометрике

Вычисление Задачи по эконометрике-критериев Стьюдента осуществляем по формуле

Задачи по эконометрике

Имеем

Задачи по эконометрике

Фактические значения критериев сравниваются с табличным Задачи по эконометрике при Задачи по эконометрике степенях свободы и уровне значимости Задачи по эконометрике.

Т.к. Задачи по эконометрике, то между независимыми переменными Задачи по эконометрике и Задачи по эконометрике существует мультиколлинеарность.

Для того, чтобы избавиться от мультиколлинеарности, можно исключить одну из переменных мультиколлинеарной пары Задачи по эконометрике и Задачи по эконометрике. Удалить следует переменную Задачи по эконометрике, т.к. у неё больше значение Задачи по эконометрике-критерия. Следовательно, она больше влияет на общую мультиколлинеарность модели. Однако этот шаг не должен противоречить экономическому смыслу задачи.

Кстати готовые на продажу задачи тут, и там же теория из учебников может быть вам поможет она.

Гетсроскедастичность в эконометрическом моделировании

Условие независимости дисперсии ошибок от номера наблюдения называется гомоскедастичностью. Нарушение данного условия вызывает нежелательное явление, называемое гетероскедастичиостью.

Гетероскедастичность возникает, когда значения переменных в уравнении регрессии сильно отличаются в разных наблюдениях, т.е. если анализируемые объекты неоднородны. Неоднородность объектов может отражаться в несопоставимости их «размеров».

Например, в одну выборку объединены крупные и мелкие банки, у которых анализируется зависимость прибыли Задачи по эконометрике от величины активов Задачи по эконометрике. В этом случае можно ожидать, что для крупных банков колебание прибыли будет выше, чем для мелких. Величина колебаний повлияет на дисперсию ошибок.

Неоднородность может также проявляться, когда в одну выборку объединяются предприятия разного профиля деятельности.

Часто при исследовании совокупности данных на гетероскедастичность предполагается, что дисперсия остатков пропорциональна квадрату значений одной из независимых переменных Задачи по эконометрике.

В этом случае наиболее эффективен параметрический тест Гольд-фельда-Квандта. Опишем его алгоритм.

Задача №2.4.

В таблице 2.5 приведены данные по зависимой переменной Задачи по эконометрике и независимым переменным Задачи по эконометрике. Требуется проверить наличие гетероскедастичности с помощью параметрического теста Гольд-фельда-Квандта при уровне значимости Задачи по эконометрике.

Задачи по эконометрике

Решение:

Применим параметрический тест Гольдфельда-Квандта.

Предположим, что дисперсия остатков пропорциональна квадрату значений одной из независимых переменных Задачи по эконометрике. Графически определим эту переменную. Построим поля парной корреляции (рис. 2.4 — 2.6).

Задачи по эконометрике
Задачи по эконометрике

Как видно из рис. 2.4 — 2.6 источником гетероскедастичности является, скорее всего, переменная Задачи по эконометрике.

  • Упорядочим наблюдения в соответствии с возрастанием значений вектора Задачи по эконометрике.
  • Требуется отбросить с наблюдений, содержащихся в середине массива данных. Т.к. Задачи по эконометрике, то по формуле Задачи по эконометрике получаем, что Задачи по эконометрике.

Данные примут вид (табл. 2.6).

  • Построим две эконометрические модели на основе МНК по двум образованным совокупностям наблюдений объёмом Задачи по эконометрике и Задачи по эконометрике. Этот объём превышает общее количество независимых переменных Задачи по эконометрике, что и требуется для теста.

В MS Excel в пункте меню «Сервис» выбираем надстройку «Анализ данных». Пользуемся инструментом анализа «Регрессия». Вводим входной интервал для Задачи по эконометрике и входной интервал для Задачи по эконометрике при уровне надёжности 95%. Имеем следующие модели:

Задачи по эконометрике
  • Найдём сумму квадратов остатков Задачи по эконометрике и Задачи по эконометрике для первой и второй моделей, соответственно:
Задачи по эконометрике
Задачи по эконометрике
  • Вычислим критерий Задачи по эконометрике, разделив большую сумму квадратов остатков на меньшую. Для степеней свободы Задачи по эконометрике и Задачи по эконометрике определим табличное значение критерия Фишера Задачи по эконометрике. Т.к. Задачи по эконометрике, то гетероскедастичность имеется с надёжностью не менее 95%. Рассмотрение задачи 2.4 окончено.