Оглавление:
Прежде чем изучать готовые решения задач, нужно знать теорию, поэтому для вас я подготовила очень краткую теорию по предмету «электротехника» и задачи с решением.
Эта страница подготовлена для студентов любых специальностей и охватывает все темы предмета «теоретические основы электротехники (ТОЭ)».
Если что-то непонятно — вы всегда можете написать мне в WhatsApp и я вам помогу! |
Теоретические основы электротехники
Теоретические основы электротехники (ТОЭ ) — техническая дисциплина, связанная с изучением теории электричества и электромагнетизма. ТОЭ подразделяется на две части — теорию электрических цепей и теорию поля. Изучение ТОЭ является обязательным во многих технических ВУЗах, поскольку на знании этой дисциплины строятся все последующие: электротехника, автоматика, энергетика, приборостроение, микроэлектроника, радиотехника и другие.
Основные явления электромагнитного поля
- Основные явления электромагнитного поля, применяемые в теории электрических цепей
- Проводники, диэлектрики и полупроводники
- Электрические токи проводимости, переноса и смещения
- Электродвижущая сила (ЭДС)
Основные понятия и законы магнитного поля
Явление электромагнитной индукции
- Закон электромагнитной индукции
- Электродвижущая сила самоиндукции и коэффициент самоиндукции
- Электродвижущая сила взаимной индукции. Взаимная индуктивность контуров. Принцип электромагнитной инерции.
- Энергия магнитного поля катушки индуктивности, плотность энергии магнитного поля
Основные понятия и законы теории электрических цепей
- Электрическая цепь и ее основные элементы
- Пассивные идеальные элементы. Идеальный резистор. Идеальная катушка индуктивности. Идеальный конденсатор.
Задачи с решением
Задача №2.1.
Определить внешнюю индуктивность провода длиной (рисунок 2.3), при условии, что
а среда — воздух. Магнитное потокосцепление, созданное током провода, учитывать через площадку
с размером
. Вычислить внешнюю индуктивность единицы длины провода.
Решение:
Магнитное поле провода длиной обладает осевой симметрией, т.е. все точки цилиндрической поверхности, ось которой совпадает с осью провода, равноудалены от источника поля и величина вектора напряженности магнитного поля одинакова, а направление вектора напряженности магнитного поля определим разбив весь провод на симметричные пары элементов
и
с током провода
. Определяем приращение индукции магнитного поля от элементов
и
по закону Био — Савара — Лапласа (1.28):
Так как выбираем равным
, а катет
общий, то учитывая, что отрезок
перпендикулярен проводу с током
,
, т.е.
и величина
.
Направления векторов и
находим по правилу раскрытия векторного произведения. Т.е. направления векторов
и
совпадают. Аналогичные направления будут от приращения
всех пар с током
. Поскольку вектора
и
направлены перпендикулярно к плоскости, в которой лежит треугольник
, то вектор магнитной индукции
и вектор напряженности
от всего провода будут всегда перпендикулярны к радиусу
окружности с центром в точке 0. в соответствии с законом полного тока (1.25)
учитывая, что для всех точек окружности
и
,
Рассчитаем магнитное потокосцепление провода. Введем ось переменной с началом в центре провода (рисунок 2.5).
На рисунке 2.5 представлен разрез провода и вектор индукции магнитного поля
. Магнитное потокосцепление провода вычислим через площадку
(рисунок 2.3), учитывая симметричный характер магнитного поля.
Вектор магнитной индукции для всех точек площадки
(рисунок 2.3):
Внешняя индуктивность провода :
Индуктивность единицы длины провода :
Задача №2.2.
Рассчитать внешнюю индуктивность единицы длины двухпроводной воздушной линии с током , если
(рисунок 2.6).
Решение:
В этом случае воспользуемся принципом наложения для линейных сред и рассчитаем магнитное поле линии как результат векторного суммирования магнитных полей, созданных каждым проводом в отдельности. Тогда в некоторой точке на оси
индукция результирующего магнитного поля
:
Здесь — индукция магнитного поля, созданного первым током
, а
, -индукция магнитного поля, созданного током
второго провода. Величины
Направления векторов и
совпадают, что позволяет перейти к алгебраическому суммированию векторов:
Рассчитаем поток вектора магнитной индукции через площадь прямоугольника (рисунок 2.6):
Индуктивность единицы длины линии :
Если , то
. Т.е. индуктивность двухпроводной линии будет в два раза больше, чем одного провода. При уменьшении величины
внешняя индуктивность двухпроводной линии уменьшается до нуля.
Задача №2.3.
Задана двухпроводная воздушная линия постоянного тока , в магнитном поле которой расположена катушка индуктивности (рисунок 2.7 а) прямоугольной формы со сторонами
и
и числом витков
. Считая длину
линии намного больше расстояния между проводами, рассчитать коэффициент взаимной индукции
между линией и катушкой, если катушка расположена в параллельной плоскости проводов на расстоянии
.
Решение:
Воспользуемся принципом наложения для расчета магнитного потока, созданного двухпроводной линией и сцепленного с одним витком катушки.
Для расчета магнитного потокосцепления, созданного первым проводом с одним витком катушки, воспользуемся сечением на рисунке 2.7 6 и результатом расчета вектора магнитной напряженности одного провода с током (пример 2.1):
где — площадь одного витка катушки;
— ток первого провода;
— расстояние от оси первого провода до произвольной точки
на поверхности витка (изменяется от
до
);
— угол между вектором
и единичным вектором
.
В процессе интегрирования угол изменяется от 90° в точке
до величины
в точке
.
На рисунке 2.7 6 из точки восстановлена ось
, совпадающая по направлению с шириной рамки
. Вектора напряженности магнитного поля
и индукции магнитного поля
построены по направлению, совпадающему с направлением касательной к окружности (силовой линии) в точках поверхности
витка.
Учитывая осевую симметрию поля (во всех точках площадки
величина индукции
одинакова), перейдем к одной переменной интегрирования
так как
, получим:
Расчет магнитного потокосцепления выполняем аналогично по рисунку 2.8. На рисунке 2.8. построены вектора магнитной индукции
, напряженности магнитного поля
, от второго проводника с учетом обратного направления тока
(к нам):
где — площадь одного витка катушки;
— ток второго провода;
— расстояние от оси второго провода до произвольной точки
на поверхности витка (изменяется от
до
);
— угол между вектором
и единичным вектором
.
С учетом осевой симметрии поля , перейдем к одной переменной интернирования
так как
, получим:
Магнитное потокосцепление всех витков :
Коэффициент магнитной индукции определяем из соотношения:
Полученная формула универсальна. Для любого нового расположения катушки при соблюдении параллельности сторон катушки результат вычисления в общем виде аналогичен.
Для данного примера:
Задача №2.4.
Рассчитать энергию, запасенную в магнитном поле катушки с кольцевым сердечником, предполагая это поле равномерным (рисунок 2.9), и коэффициент самоиндукции . Все величины заданы на рисунке в общем виде, как и
.
Решение:
Воспользуемся формулой (1.42) для расчета энергии магнитного поля:
В соответствии с законом полного тока:
Учитывая равномерность поля в катушке:
что позволяет рассчитать напряженность магнитного поля:
Следовательно:
где
Индуктивность катушки можно определить для внешнего магнитного поля, воспользовавшись общим определением:
Подставив в последнюю формулу выражение , получим:
Задача №2.5.
Рассчитать индуктивность одножильного кабеля (рисунок 2.13) полагая, что внутренний провод является прямым, а наружный — обратным. Магнитным потоком в обратном проводе пренебречь ввиду малой толщины этого провода. Геометрические размеры и величину магнитной проницаемости материалов считать заданными в общем виде, где: — длина кабеля;
— радиус жилы;
— внутренний радиус оболочки.
Решение:
Расчет магнитного поля для заданного примера выполняем с учетом осевой симметрии поля по диапазонам значения (см. пример 2.1).
При значениях выбираем силовую магнитную линию. Так как все точки этой окружности равноудалены от источника поля, величина напряженности магнитного поля постоянна и в соответствии с законом полного тока:
где — расстояние от оси кабеля до точки, в которой определяется
;
— площадь круга с радиусом
.
Эта формула верна при постоянном токе . Рассчитаем магнитное потокосцепление внутри внутреннего провода (жилы) через площадку
, где
— длина кабеля. Магнитное потокосцепление через заштрихованную площадку
:
а через всю площадь :
Магнитное поле обратного провода не учитывается в соответствии с законом полного тока.
Расчет магнитного потокосцепления в слое изоляции , т.е. через площадку
(рисунок 2.11).
Напряженность магнитного поля в слое изоляции в соответствии с законом полного тока определяется как в примере 2.1:
Магнитное потокосцепление в слое изоляции:
Индуктивность кабеля:
Задача №2.6.
Рассчитать емкость плоского конденсатора в общем виде (рисунок 2.12), пренебрегая искажением поля у краев пластин и считая поле между пластинами однородным.
Решение:
Для случая можно считать при параллельном расположении пластин и идеальном диэлектрике, что в любой плоскости между пластинами и параллельной пластинам все точки одинаково расположены по отношению к заряженным пластинам и, следовательно, имеют равные потенциалы и характеристики
и
. Если воспользоваться теоремой Гаусса для параллелепипеда
, учитывая, что поток вектора
через грань
равен нулю, из-за отсутствия поля вне объема конденсатора, поток вектора электрической индукции будет равен:
где — поверхностная плотность электрических зарядов пластины;
— площадь поверхности электрода.
Так как величина заряда пластины не зависит от размера
, следовательно, учитывая
, приходим к выводу о равномерности поля для всех точек внутри конденсатора. Уменьшая размеры параллелепипеда до элементарного объема, можно получить равенство
, или
для любой точки на поверхности пластины.
По определению:
где — напряженность электрического поля, равная
Задача №2.7.
Получить формулу для емкости одножильного кабеля (рисунок 2.13) в общем виде. Размеры указаны на чертеже. — радиус внутреннего электрода (жилы), a
— внутренний радиус второго электрода (оболочки). Диэлектрическая проницаемость диэлектрика —
— длина кабеля.
Решение:
Рассмотрим сечение кабеля на рисунке 2.14. Внутренняя жила кабеля 1 подключена к положительному зажиму источника питания, а оболочка 2 подключена к отрицательному зажиму источника питания. В результате происходит зарядка жилы зарядом + и оболочки зарядом —
.
Рассмотрим характер электростатического поля, созданного электродами. Выбираем произвольную точку в диэлектрике и соединим центральную точку
с точкой а отрезком
. Так, как свободные электрические заряды жилы и оболочки противоположного знака, то под действием сил притяжения они перемещаются на поверхность. Так как система проводников носит коаксиальный характер (соосный), то заряды располагаются по поверхности проводников равномерно с плотностью
и
.
Выбираем на поверхности жилы на расстоянии две одинаковые площадки
и
, симметрично расположенные относительно точки к. центры этих площадок — точки
и
Заряды на площадках
и
соответственно
и
, одинаковы:
. Прямоугольные треугольники
и
равны друг другу, так как
, а сторона
общая, следовательно,
.
Напряженность электрического поля в точке а, созданная зарядами и
:
где
так как
Следовательно, , а вектор
имеет только радиальную составляющую, совпадающую по направлению с отрезком
.
Если окружность с радиусом разбить на симметричные пары участков, то все пары внесут в вектора напряженности электрического поля в точке а только радиальные составляющие.
Все точки окружности с радиусом , как и все точки цилиндрической поверхности, имеют одинаковую напряженность электрического поля в связи с одинаковым расположением относительно заряженных поверхностей. Такое поле называют осесимметричным. Так как вектор электрической индукции
, то воспользуемся теоремой Гаусса для определения вектора напряженности электрического поля по потоку вектора
через цилиндрическую поверхность
единицы длины кабеля:
где — площадь поверхности цилиндра с радиусом
;
— площадь поверхности жилы;
— заряд жилы на единицу длины,
— поверхностная плотность заряда.
Следовательно, ,
.
Разность потенциалов между жилой и оболочкой (точки 1, 2 рисунок 2.14):
Следовательно:
Задача №2.8.
Получить выражение для емкости единицы длины двухпроводной линии передачи электрической энергии длиной с цилиндрическими проводами (рисунок 2.15) без учета влияния земли. При этом следует считать, что радиус провода
поперечного сечения проводов значительно меньше расстояния
между ними и
.
Решение:
Для воздушных линий электропередачи обычно и заряды распределяются равномерно по длине каждого провода и влиянием конечного размера длины можно пренебречь.
Результирующее электрическое поле можно рассчитать по принципу наложения двух электрических полей проводов (жил) заряженных линейными плотностями равных зарядов + и —
по величине и противоположных по знаку. Напряженность электрического поля, созданного первым проводом, можно определить по формуле для жилы предыдущего примера 2.7:
а напряженность электрического поля, созданного вторым проводом:
Характер электрического поля каждого из проводов носит осимметричный характер и имеет только радиальную составляющую.
Напряженность результирующего электрического поля:
так как оба вектора направлены одинаково, можно перейти к скалярному уравнению:
На основании формулы (1.6) рассмотрим разность электрических потенциалов между проводами 1 и 2 вдоль линейного отрезка:
Для второго интеграла перейдем к новой переменной интегрирования , следовательно,
и разность потенциалов определяется выражением:
Следовательно, искомая емкость:
Схемы замещения реальных электротехнических устройств
- Схемы замещения реальных электротехнических устройств
- Линейные и нелинейные идеальные пассивные элементы и электрические цепи
- Электрические цепи с сосредоточенными и распределенными параметрами
- Активные идеальные элементы
- Основные топологические понятия схемы электрической цепи
Основные задачи теории электрических цепей
Задачи теории электрических цепей делят на две группы. К первой группе относят задачи анализа. Целью задач анализа является расчет электрических процессов в заданных электрических цепях: при заданной конфигурации электрической цепи и заданными величинами всех элементов цепи необходимо рассчитать величины токов в ветвях и падений напряжений на элементах.
Вторая группа задач — задачи синтеза, когда необходимо отыскать конфигурацию электрической цепи и характеристики элементов, при которых электрический процесс в цепи будет подчиняться заданному режиму, заданным величинам токов и напряжений, т.е. целью синтеза является обратная задача. В данном пособии решается первая группа задач.
При этом, линейные электрические цепи постоянного тока являются наиболее простыми для вывода основных методов расчета и доказательства теорем. При расчете линейных цепей синусоидального тока применимы в дальнейшем все методы расчета, формулы и теоремы, полученные для линейных цепей постоянного тока.
Линейные электрические цепи постоянного тока с сосредоточенными параметрами. Основные положения и законы
- Определение линейных электрических цепей постоянного тока и законы Кирхгофа
- Закон Ома для ветви, содержащей ЭДС
- Потенциальная диаграмма
- Баланс мощностей
Метод эквивалентного преобразования электрических цепей
Сущность и цель преобразований
Цель преобразования электрических цепей состоит в упрощении схем путем эквивалентных преобразований, приводящих к уменьшению числа ветвей и узлов. Эквивалентные преобразования входят во все методы расчета в качестве первого шага в последовательностях расчета. Под эквивалентными преобразованиями мы будем понимать преобразования одной части схемы, при которых в остальной части величины токов и напряжений остаются неизменными, как и сама схема.
Задачи с решением
Задача №3.4.
Рассчитать напряжение (рисунок 3.17), если величины элементов имеют значения:
Решение:
Выбираем направление обхода контура по часовой стрелке. По первому закону Кирхгофа можно составить уравнение для расчета тока :
По второму закону Кирхгофа можно составить уравнение и рассчитать :
Следовательно:
Эквивалентные преобразования резисторов, включенных в виде «треугольника» или трехлучевой «звезды»
Эквивалентные преобразования участков цепи с источниками энергии
Метод непосредственного применения законов Кирхгофа
Матричная форма уравнений по методу непосредственного применения законов Кирхгофа (МНЗ)
Примеры расчета по методу непосредственного применения законов Кирхгофа
Задача №3.7.
Рассчитать токи и
методом непосредственного применения законов Кирхгофа, если:
Решение:
Первый этап. Выбираем направления токов в ветвях схемы и упрощаем электрическую цепь путем преобразования ветви с источником тока . Так как внутреннее сопротивление источника тока бесконечно,a
конечное, последнее исчезает, а вместо одной ветви с источником тока можно зарисовать две ветви с источником тока (рисунок 3.42).
Применяем эквивалентное преобразование параллельных ветвей с источником тока, получаем упрощенную цепь (рисунок 3.43.), где .
В упрощенной схеме на две ветви и на два узла меньше, чем в предыдущей схеме. Число неизвестных токов три, а узлов — два.
Второй этап. По первому закону Кирхгофа составляем одно уравнение для первого узла:
Третий этап. По второму закону Кирхгофа составляем два недостающих уравнения для независимых контуров I и II.
Подставляем значения величин в уравнения (3.28) и (3.29), получаем:
Четвертый этап. Решаем полученную систему с помощью определителей:
Ток в схеме, изображенной на рисунке 3.41, находим по первому закону Кирхгофа для узла 4:
Ток находим по уравнению
для узла 3.
Пятый этап. Проверим достоверность полученных результатов по выполнению баланса мощностей для заданной электрической цепи (рисунок 3.41):
Напряжение на зажимах источника тока можно вычислить по уравнению, составленному по второму закону Кирхгофа для контура III (рисунок 3.41):
Следовательно:
Подставляем полученные значения в уравнение 3.31:
Расчет выполнен верно.
Недостаток метода непосредственного применения законов Кирхгофа связан с необходимостью составления и решения большого количества уравнений, если не производить упрощения электрических цепей.
Задача №3.8.
Рассмотрим пример решения задачи, где необходимо рассчитать параметры источника энергии. Рассчитать токи и напряжения на всех участках электрической цепи и значение напряжения источника ЭДС для схемы на рисунке 3.44, если
Направление токов указано на схеме (рисунок 3.44).
Решение:
Схема достаточно проста, поэтому по второму этапу составим уравнение по первому закону Кирхгофа для второго узла. А по третьему этапу составим уравнения по второму закону Кирхгофа для первого и второго контуров:
для узла 2
для первого контура
для второго контура
Общее число неизвестных величин токов и ЭДС
— четыре, поэтому систему уравнений (3.33) — (3.35) дополняем четвертым уравнением по закону Ома:
По четвертому этапу решаем уравнение (3.35) относительно тока , подставляя параметры элементов
откуда:
Из уравнения (3.33) находим:
Величину ЭДС вычисляем из уравнения (3.34):
Для линейных электрических цепей наиболее часто применяется метод контурных токов и метод узловых потенциалов, которые основаны на различных вариантах решения уравнений, составленных по законам Кирхгофа.
Примеры расчёта методом контурных токов (MKT)
Задача №3.10.
Для электрической цепи, схема которой изображена на рисунке 3.49 выполнить расчёт токов в ветвях электрической цепи, если параметры элементов имеют следующие значения:
Решение:
На первом этапе упростим электрическую схему, заменив источник тока на источник ЭДС:
На втором этапе выбираем положительные направления токов в ветвях схемы и независимые контуры с неизвестными контурными токами и их положительными направлениями.
Так как независимых контуров три, схема будет содержать три неизвестных контурных тока .
На третьем этапе составляем стандартную систему из трёх уравнений:
Для данной схемы:
Решаем систему (3.65) с помощью определителей:
На четвёртом этапе вычисляем токи ветвей:
Ток , исходной схемы рисунка 3.49 вычисляем для узла
:
На пятом этапе выполняем проверку расчётов по балансу мощности. Уравнение энергетического баланса для схемы рисунка 3.50 имеет вид:
Задача №3.11.
Для условия примера 3.9. выполнить расчет методом контурных токов,
не заменяя источники тока на источники ЭДС, то есть без первого этапа упрощения электрической цепи.
Решение:
На втором этапе выбираем положительные направления токов в ветвях схемы и независимые контуры с неизвестными контурными токами и их положительные направления.
Кроме неизвестных контурных токов вводим три известных контурных тока:
На рисунке 3.51 представлены все шесть контуров с контурными токами. На третьем этапе составим стандартную систему уравнений по MKT для трёх неизвестных контурных токов :
Здесь:
Переносим слагаемые с известными контурными токами в правую часть системы уравнений (3.68). Получим:
Сравниваем полученную систему уравнений (3.69) с системой уравнений (3.57), приходим к выводу об их полном совпадении. Дальнейшие вычисления токов полностью повторяют решение предыдущего примера 3.9.
Примеры расчёта методом узловых потенциалов (МУП)
Задача №3.13.
Выполнить расчет токов в ветвях электрической цепи рисунка 3.56 в общем виде: считая заданными параметры элементов; сопротивлением амперметра пренебрегаем, а сопротивление вольтметра учитываем при расчете.
Решение:
На первом этапе упростим электрическую цепь рисунка 3.56, объединяем узлы связанные ветвями без элементов, и выберем положительные направления токов.
На втором этапе пронумеруем узлы, выбрав самый старший по номеру узел 5, ограничивающий ветви с бесконечной проводимостью. «Заземляем» узел 5, а потенциалы узлов 2, 3, 4 являются известными:
Неизвестным потенциалом является потенциал только первого узла.
На третьем этапе составляем одно уравнение с одним неизвестным потенциалом:
Здесь:
Очевидно, что:
На четвертом этапе рассчитываем токи в ветвях электрической цепи рисунка 3.57 по закону Ома для ветви, содержащей ЭДС:
На пятом этапе рассчитываем остальные токи по первому закону Кирхгофа для рисунка 3.56 заданной схемы:
Задача №3.14.
Для электрической цепи примера 3.10. выполнить расчет токов в ветвях методом узловых потенциалов.
Решение:
Выбираем упрощенную схему 3.50. По второму этапу проставляем направления токов и пронумеруем узлы электрической схемы.
Принимаем потенциал узла 4 равным нулю .
На третьем этапе для трех неизвестных потенциалов и
составляем стандартную систему уравнений:
Подставляем формулы коэффициентов в уравнения (3.94):
Решаем полученную систему (3.96) с помощью определителей:
Здесь:
На четвертом этапе рассчитываем токи в ветвях электрической цепи по закону Ома для ветви содержащей ЭДС:
Пятый и шестой этапы выполнены в примере 3.11.
Кстати готовые на продажу задачи тут, и там же теория из учебников может быть вам поможет она.
Основные теоремы теории линейных электрических цепей
Метод эквивалентного генератора
Условие передачи максимальной мощности от активного двухполюсника в нагрузку (приемник)
Теорема компенсации
Линейные соотношения в линейных электрических цепях
Возможно эти дополнительные страницы вам будут полезны: