Высшая математика для заочников

Краткий курс лекций по высшей математике для студентов (заочников) любых форм обучения. Я собрала теорию и примеры с решениями к каждой теме, чтобы вы смогли подготовиться к экзамену или освежить память перед контрольной работой!

Если что-то непонятно вы всегда можете написать мне в воцап и я вам помогу!

Глава 1. Элементы линейной алгебры

  1. Определители матрицы: алгоритм, примеры вычисления
  2. Матрицы. Операции над матрицами
  3. Системы линейных уравнений

Глава 2. Векторная алгебра

  1. Векторная алгебра: основные понятия и определения
  2. Проекция вектора на ось
  3. Действия над векторами, заданными координатами
  4. Скалярное произведение двух векторов
  5. Полярная система координат
  6. Цилиндрическая система координат
  7. Сферическая система координат
  8. Векторное произведение векторов
  9. Смешанное произведение трех векторов
  10. Векторное и смешанное произведения в декартовых координатах

Глава 3. Уравнение линии на плоскости. Уравнения поверхности и линии в пространстве

  1. Алгебраические линии и поверхности
  2. Различные виды уравнения прямой на плоскости
  3. Определение угла между прямыми
  4. Различные виды уравнения плоскости
  5. Угол между плоскостями
  6. Прямая линия в пространстве

Глава 4. Кривые второго порядка

  1. Кривые второго порядка: эллипс, гипербола, парабола
  2. Исследование общего уравнения кривой 2-го порядка

Глава 5. Функция. Теория пределов. Непрерывность функции

  1. Функция
  2. Вычисление пределов функции
  3. Вычисление пределов от рациональной дроби при x > a (a ≠ ∞ )
  4. Вычисление пределов от рациональной дроби при x > ∞
  5. Вычисление пределов, содержащих радикалы
  6. Вычисление пределов, содержащих тригонометрические функции
  7. Вычисление пределов от показательно-степенных функций
  8. Вычисление пределов с учетом их особенностей
  9. Непрерывность функции в точке

Глава 6. Производная и ее приложения. Приложения дифференциального исчисления

  1. Производная. Механический и геометрический смысл производной
  2. Таблица производных, правила дифференцирования, производная обратной функции
  3. Производная функции, заданной параметрически
  4. Производная функции, заданной в неявном виде
  5. Монотонность и экстремумы функции
  6. Наибольшее ( наименьшее) значения непрерывной и дифференцируемой функции y=f(x) на отрезке [a,b]
  7. Теоремы о среднем: Лагранжа, Ролля, Коши
  8. Построение графиков функций: схема, определение и примеры с решением
  9. Уравнение касательной в точке r (t0), уравнение нормальной плоскости, проходящей через r (t0) и кривизна кривой Г в точке r (t0), заданной векторно-параметрическим уравнением

Глава 7. Неопределенный и определенный интегралы

Интегрирование представляет собой операцию, обратную дифференцированию, поэтому основные формулы интегрирования получают из формул дифференцирования. Отыскание неопределенного интеграла некоторой функции называется интегрированием.

Сравнивая операции дифференцирования и интегрирования функций, сделаем два замечания:

1. Если для дифференцируемости функции в точке непрерывность функции в этой точке является условием необходимым, но недостаточным, то для интегрируемости функции на отрезке, наоборот, непрерывность функции на этом отрезке является только условием достаточным, но не необходимым.

2. Каждая дифференцируемая функция имеет единственную производную, а операция интегрирования многозначна, так как функция имеет одну первообразную на отрезке, то она имеет и бесконечное множество первообразных на этом отрезке, отличающихся одна от другой на постоянное число.

  1. Определение и основные свойства неопределенных интегралов с примером решения
  2. Интегрирование путем подстановки: определение и примеры с решением
  3. Определенный интеграл

Глава 8. Дифференциалъные уравнения

  1. Дифференциальные уравнения первого порядка: основные понятия
  2. Уравнения с разделяющимися переменными
  3. Однородные уравнения первого порядка
  4. Линейные уравнения первого порядка
  5. Уравнение Бернулли

Глава 9. Дифференциальные уравнения высших порядков

  1. Уравнения вида y(n) = f(x)

Глава 10. Некоторые типы дифференциальных уравнений второго прядка, приводимые к уравнениям первого порядка

  1. Уравнения не содержащие: (y)
  2. Уравнения, не содержащие x
  3. Линейные однородные уравнения с постоянными коэффициентами
  4. Линейные неоднородные уравнения с постоянными коэффициентами
  5. Метод вариации произвольных постоянных

Глава 11. Системы дифференциальных уравнений

  1. Сведение системы к одному дифференциальному уравнению высшего порядка
  2. Решение систем дифференциальных уравнений с помощью характеристического уравнения
  3. Задачи, приводящие к дифференциальным уравнениям с примером решения

Глава 12. Комплексные числа

  1. Числовые поля
  2. Комплексные числа
  3. Действия с комплексными числами в алгебраической форме
  4. Решение алгебраических уравнений в поле комплексных чисел
  5. Тригонометрическая форма комплексных чисел
  6. Действия с комплексными числами, заданными в тригонометрической форме

Глава 13. Дифференциальное исчисление функций нескольких переменных

  1. Функций многих переменных
  2. Частные производные и полный дифференциал функции
  3. Производные и дифференциалы высших порядков
  4. Касательная плоскость и нормаль к поверхности
  5. Экстремум функции нескольких переменных
  6. Условный экстремум
  7. Производная в данном направлении. Градиент функции
  8. Наибольшее и наименьшее значение функции z=f(x,y)
  9. Метод наименьших квадратов

Глава 14. Кратные, криволинейные и поверхностные интегралы. Векторный анализ

  1. Двойной интеграл
  2. Тройной интеграл
  3. Криволинейный интеграл

Глава 15. Векторный анализ

  1. Векторный анализ: основные понятия и пример с решением

Глава 16. Ряды

  1. Ряды в высшей математике

Возможно эти страницы вам будут полезны: