Теория вероятностей задачи с решением

Оглавление:

Теория вероятностей задачи с решением

Прежде чем изучать готовые решения задач по теории вероятности, нужно знать теорию, поэтому для вас я подготовила краткую теорию по предмету «теория вероятностей», после которой подробно решены задачи.

Эта страница подготовлена для школьников и студентов.

Если что-то непонятно вы всегда можете написать мне в воцап и я вам помогу!

Теория вероятностей

Теория вероятностей – это математическая наука, изучающая закономерности случайных явлений.

Теория вероятностей — раздел математики, в котором изучаются общие закономерности случайных явлений массового характера независимо от их конкретной природы. Она разрабатывает методы количественной оценки влияния случайных факторов на различные явления. Знание этих закономерностей позволяют предвидеть, как эти события будут протекать в реальном опыте.

Элементы комбинаторики

Пусть дано множество Теория вероятностей задачи с решением, состоящее из Теория вероятностей задачи с решением элементов

Теория вероятностей задачи с решением

Перестановками на множестве из Теория вероятностей задачи с решением элементов называются всякие упорядоченные множества, состоящие из этих Теория вероятностей задачи с решением элементов. Количество всех перестановок на множестве из Теория вероятностей задачи с решением элементов обозначается Теория вероятностей задачи с решением и определяется по формуле

Теория вероятностей задачи с решением

Таким образом, перестановки одинаковы по составу элементов, но различаются порядком их перечисления.

Размещениями на множестве из Теория вероятностей задачи с решением элементов по Теория вероятностей задачи с решением элементов называются всякие упорядоченные подмножества, состоящие из Теория вероятностей задачи с решением элементов. Два различных размещения отличаются либо составом элементов, либо их порядком. Число размещений на множестве из Теория вероятностей задачи с решением элементов по Теория вероятностей задачи с решением элементов обозначается Теория вероятностей задачи с решением и определяется формулой

Теория вероятностей задачи с решением

Сочетаниями из Теория вероятностей задачи с решением различных элементов но Теория вероятностей задачи с решением элементов называется подмножество, состоящее из Теория вероятностей задачи с решением элементов, каждый из которых встречается один раз. Два различных сочетания отличаются хотя бы одним элементом. Число сочетаний па множестве из Теория вероятностей задачи с решением элементов по Теория вероятностей задачи с решением элементов обозначается Теория вероятностей задачи с решением и определяется формулой

Теория вероятностей задачи с решением

Если среди Теория вероятностей задачи с решением элементов одного вида есть Теория вероятностей задачи с решением, второго вида — Теория вероятностей задачи с решением и т.д., то, поменяв местами элементы одного вида, получим ту же перестановку. Поэтому число перестановок с повторениями определяется формулой

Теория вероятностей задачи с решением

где

Теория вероятностей задачи с решением

Число размещений на множестве из Теория вероятностей задачи с решением элементов по Теория вероятностей задачи с решением элементов с повторениями определяется формулой

Теория вероятностей задачи с решением

Возможно эта страница вам будет полезна:

Предмет теория вероятностей и математическая статистика

Задача №1

Имеется множество, состоящее из 5 цифр Теория вероятностей задачи с решением. Сколько различных пятизначных чисел можно составить из этих цифр?

Решение:

Так как пятизначные числа отличаются только порядком следованием цифр в числе, то количество различных пятизначных чисел будет равно количеству перестановок на множестве из 5 элементов

Теория вероятностей задачи с решением

Задача №2

Студентам нужно сдать пять экзаменов за 20 дней. Сколькими способами можно составит ь расписание экзаменов.

Решение:

Расписание определяется датами (пять дат) проведения экзаменов и последовательностью дисциплин, по которым они проводятся. Поэтому число различных вариантов расписаний экзаменов будет равно количеству размещений па множестве из 20 элементов по 5 элементов

Теория вероятностей задачи с решением

Задача №3

Из команды, состоящей из 10 человек, выбирают 4 кандидатов для эстафеты 4×100 м. Сколькими способами это можно сделать?

Решение:

Число различных комбинаций из 10 членов команды для участия в эстафете

4 кандидатов будет равно количеству сочетаний на множестве из 10 элементов по 4 элемента

Теория вероятностей задачи с решением

Задача №4

Имеется слово КОЛОКОЛ. Сколько различных слов можно составить из букв этого слова?

Решение:

В слово буквы входят с повторениями. Поэтому количество различных перестановок определяется по формуле (1.4)

Теория вероятностей задачи с решением

Определении вероятности

Пусть проводится случайный эксперимент. Элементарным событием или исходом в случайном эксперименте называется всякая конкретная реализация этого эксперимента. Множество всех исходов эксперимента образует пространство элементарных исходов. Случайным событием называется всякое подмножество пространства элементарных исходов.

Исход называется благоприятствующим событию Теория вероятностей задачи с решением, если появление исхода влечет появление события Теория вероятностей задачи с решением.

Пусть случайный эксперимент имеет Теория вероятностей задачи с решением равновозможных элементарных исходов.

Классическое определение вероятности. Вероятностью события Теория вероятностей задачи с решением называется отношение числа исходов, благоприятствующих событию Теория вероятностей задачи с решением к общему числу всех единственно возможных и равновозможных элементарных исходов опыта

Теория вероятностей задачи с решением

где Теория вероятностей задачи с решением число исходов, благоприятствующих событию Теория вероятностей задачи с решением; Теория вероятностей задачи с решением число всех равновозможных исходов.

Относительной частотой события Теория вероятностей задачи с решением называется отношение числа испытаний, в которых наступило событие Теория вероятностей задачи с решением, к общему числу проведенных испытаний

Теория вероятностей задачи с решением

где Теория вероятностей задачи с решением — общее число проведенных испытаний; Теория вероятностей задачи с решением — число испытаний, в которых наступило событие Теория вероятностей задачи с решением.

При неограниченном увеличении числа испытаний относительная частота события Теория вероятностей задачи с решением стремится к вероятности наступления события в отдельном испытании. На этом факте основано статистическое определение вероятности, когда вероятности полагаются равными относительным частотам событий при большом Теория вероятностей задачи с решением.

Пусть имеется некоторая область Теория вероятностей задачи с решением на плоскости или в пространстве и другая область Теория вероятностей задачи с решением. В область Теория вероятностей задачи с решением случайным образом ставится точка. Нужно найти вероятность того, что она попадет в область Теория вероятностей задачи с решением. Все отборы положения точки в области Теория вероятностей задачи с решением считаются равновозможными. Геометрической вероятностью называется отношение меры области Теория вероятностей задачи с решением к мере области Теория вероятностей задачи с решением

Теория вероятностей задачи с решением

Свойства вероятности

  • Вероятность невозможного события Теория вероятностей задачи с решением равна О
Теория вероятностей задачи с решением
  • Вероятность достоверного события Теория вероятностей задачи с решением равна 1
Теория вероятностей задачи с решением
  • Для любого случайного события Теория вероятностей задачи с решением
Теория вероятностей задачи с решением
  • Вероятность события Теория вероятностей задачи с решением противоположного событию Теория вероятностей задачи с решением определяется по формуле
Теория вероятностей задачи с решением

Задача №5

Набирая номер телефона, абонент забыл последние две цифры и. помня лишь, что эти цифры различны, набрал их наудачу. Найти вероятность того, что набраны нужные цифры.

Решение:

Обозначим через Теория вероятностей задачи с решением событие — {набраны две нужные цифры]. Для определения вероятности события Теория вероятностей задачи с решением будем использовать классическое определение вероятности Теория вероятностей задачи с решением. Всего можно набрать столько различных цифр по две цифры, сколько может быть составлено размещений из десяти цифр по две Теория вероятностей задачи с решением. Благоприятствует событию В только одна пара цифр: Теория вероятностей задачи с решением. Тогда Теория вероятностей задачи с решением.

Задача №6

На девять вакантных мест претендуют 15 кандидатов, из них 7 женщин, остальные мужчины. Какова вероятность того, что из девяти случайно отобранных кандидатов ровно пять женщин.

Решение:

Пусть событие Теория вероятностей задачи с решением состоит в том, что из 9 отобранных кандидатов 5 женщин. Для решения используем классическое определение вероятности. Общее число исходов будет равно числу способов, которыми можно выбрать 9 человек из 15 кандидатов

Теория вероятностей задачи с решением

Число благоприятствующих исходов

Теория вероятностей задачи с решением

Задача №7

В квадрат со стороной Теория вероятностей задачи с решением случайным образом ставится точка. Какова вероятность того, что эта точка попадет в круг, вписанный в этот квадрат.

Решение:

Пусть событие Теория вероятностей задачи с решением состоит в том, что {точка попадет в круг}. Для определения вероятности события Теория вероятностей задачи с решением используем геометрическую вероятность

Теория вероятностей задачи с решением

Теоремы сложения и умножения вероятностей

Теорема сложения. Вероятность суммы двух событий равна сумме вероятностей этих событий без вероятности их совместного появления

Теория вероятностей задачи с решением

Если события Теория вероятностей задачи с решением и Теория вероятностей задачи с решением несовместные, то вероятность суммы несовместных событий равна сумме вероятностей этих событий

Теория вероятностей задачи с решением

Суммой двух событий называется событие, состоящее из элементарных исходов, благоприятствующих либо первому событию, либо второму, либо обоим событиям.

Два события называются несовместными, если они не имеют общих исходов.

Произведением двух событий называется событие, состоящее из элементарных исходов, благоприятствующих и первому, и второму событиям.

Два события называются независимыми, если вероятность появления одного события не зависит от того, произошло или не произошло второе событие.

Условной вероятностью Теория вероятностей задачи с решением называют вероятность события Теория вероятностей задачи с решением, вычисленную в предположении, что событие Теория вероятностей задачи с решением произошло.

Теорема умножения вероятностей. Вероятность произведения двух событий равна произведению вероятностей одного события на условную вероятность второго события при условии, что произошло первое событие

Теория вероятностей задачи с решением

Если события Теория вероятностей задачи с решением и Теория вероятностей задачи с решением независимые, то вероятность произведения двух событий равна произведению вероятностей этих событий

Теория вероятностей задачи с решением

Задача №8

Найти вероятность того, что случайно взятое двузначное число будет кратным двум или пяти.

Решение:

Пусть событие Теория вероятностей задачи с решением состоит в том, что {случайно взятое число будет кратным двум или пяти}; Теория вероятностей задачи с решением — событие, состоящее в том, что {число, кратное двум}; Теория вероятностей задачи с решением — событие, состоящее в том, что {число, кратное пяти}. События Теория вероятностей задачи с решением и Теория вероятностей задачи с решением являются совместными, так как есть числа, которые одновременно делятся на два и пять. Так как Теория вероятностей задачи с решением, то Теория вероятностей задачи с решением. Вычислим вероятности этих событий, воспользовавшись классическим определением вероятности

Теория вероятностей задачи с решением

Тогда

Теория вероятностей задачи с решением

Задача №9

Для подготовки к экзамену студентам дано 60 вопросов. Студент, идя на экзамен, выучил 50 вопросов. Найти вероятность того, что студент сдаст экзамен, если для сдачи экзамена студенту нужно ответить на два вопроса из двух заданных.

Решение:

Пусть событие Теория вероятностей задачи с решением состоит в том, что студент сдаст экзамен. Событие Теория вероятностей задачи с решением = {студент ответил на первый вопрос}, Теория вероятностей задачи с решением = {студент ответил на второй вопрос}. Тогда Теория вероятностей задачи с решением. События Теория вероятностей задачи с решением и Теория вероятностей задачи с решением — зависимые. Применяя теорему умножения вероятностей, мы получаем

Теория вероятностей задачи с решением

Найдем вероятности событий, воспользовавшись классическим определением вероятности

Теория вероятностей задачи с решением

Задача №10

Стрелок делает независимо друг от друга два выстрела по мишеням. Вероятность попадания в мишень при первом выстреле равна 0,7, при втором — 0.9. Найти вероятность того, что при двух выстрелах будет только одно попадание в мишень.

Решение:

Пусть событие Теория вероятностей задачи с решением состоит в том, что {будет только одно попадание при двух выстрелах}, событие Теория вероятностей задачи с решением состоит в том, что {будет попадание при первом выстреле}, событие Теория вероятностей задачи с решением = {попадание при втором выстреле}.

Теория вероятностей задачи с решением

Тогда

Теория вероятностей задачи с решением

Формула полной вероятности. Формулы Баиеса

Пусть событие Теория вероятностей задачи с решением может произойти вместе с одним из событий Теория вероятностей задачи с решением. События Теория вероятностей задачи с решением образуют полную группу попарно несовместных событий, если они: 1) попарно несовместны; Теория вероятностей задачи с решением; 2) сумма событий Теория вероятностей задачи с решением является достоверным событием, то есть Теория вероятностей задачи с решением.

Теорема 4.1. Пусть событие Теория вероятностей задачи с решением может произойти совместно с одним из событий Теория вероятностей задачи с решением которые образуют полную группу попарно несовместных событий. Тогда вероятность события Теория вероятностей задачи с решением определяется по формуле полной вероятности

Теория вероятностей задачи с решением

События Теория вероятностей задачи с решением называются гипотезами.

Теорема 4.2. Пусть событие Теория вероятностей задачи с решением может произойти совместно с одной из гипотез Теория вероятностей задачи с решением Если событие Теория вероятностей задачи с решением произошло, то вероятности появления гипотез вычисляются по формулам Байеса

Теория вероятностей задачи с решением

Задача №11

Электролампы изготавливаются на трех заводах. Первый завод изготавливает 45% общего количества электроламп, второй — 40%, третий — 15%. Продукция первого завода содержит 70% стандартных электроламп, второго — 80%, третьего — 81%. Найти вероятность того, что случайно взятая электролампа будет стандартной.

Решение:

Пусть событие Теория вероятностей задачи с решением состоит в том. что {случайно взятая лампа стандартна). Введем гипотезы Теория вероятностей задачи с решением [лампа произведена на Теория вероятностей задачи с решением заводе]. Вероятность события Теория вероятностей задачи с решением определяется по формуле полной вероятности

Теория вероятностей задачи с решением

Найдем вероятности гипотез:

Теория вероятностей задачи с решением

Условные вероятности будут равны:

Теория вероятностей задачи с решением

Подставив в формулу полной вероятности, получим

Теория вероятностей задачи с решением

Задача №12

В пирамиде 10 винтовок, из них 6 снабжены оптическим прицелом, а остальные винговки — с обыкновенным прицелом. Вероятность попадания в цель из винтовки с оптическим прицелом равна 0,9; из обыкновенной винтовки — 0,7. Стрелок поразил цель из случайно взятой винтовки. Какова вероятность того, что он стрелял из обычной винтовки.

Решение:

Пусть событие Теория вероятностей задачи с решением состоит в том, что стрелок поразил цель, событие Теория вероятностей задачи с решением = {стрелял из обыкновенной винтовки}, событие Теория вероятностей задачи с решением = {из винтовки с оптическим прицелом}.

Теория вероятностей задачи с решением

Из условия задачи

Теория вероятностей задачи с решением

Схема повторных независимых испытаний (схема Бернулли)

Схемой Бернулли называется последовательность из Теория вероятностей задачи с решением независимых испытаний, в каждом из которых возможны только два исхода: событие Теория вероятностей задачи с решением может наступить или не наступить, и вероятность появления события Теория вероятностей задачи с решением в каждом испытании постоянна.

Формула Бернулли. Вероятность того, что в Теория вероятностей задачи с решением независимых испытаниях, в каждом из которых вероятность появления события Теория вероятностей задачи с решением равна Теория вероятностей задачи с решением, событие Теория вероятностей задачи с решением наступит ровно к раз, равна

Теория вероятностей задачи с решением

где

Теория вероятностей задачи с решением

Локальная теорема Муавра-Лапласа. Вероятность того, что в Теория вероятностей задачи с решением независимых испытаниях, в каждом из которых вероятность появления события равна Теория вероятностей задачи с решением, событие наступит ровно Теория вероятностей задачи с решением раз, приближенно равна 1

Теория вероятностей задачи с решением

где

Теория вероятностей задачи с решением

Значения функции Теория вероятностей задачи с решением находятся по таблице по вычисленным значениям Теория вероятностей задачи с решением. Интегральная теорема Муавра-Лапласа. Вероятность того, что в Теория вероятностей задачи с решением независимых испытаниях, в каждом из которых вероятность появления события Теория вероятностей задачи с решением равна Теория вероятностей задачи с решением событие Теория вероятностей задачи с решением наступит от Теория вероятностей задачи с решением до Теория вероятностей задачи с решением раз, приближенно равна

Теория вероятностей задачи с решением

где

Теория вероятностей задачи с решением

Значения функции Теория вероятностей задачи с решением находят по таблице по вычисленным значениям Теория вероятностей задачи с решением. Формула Пуассона. Если в схеме Бернулли число испытаний велико, а вероятность появления события Теория вероятностей задачи с решением мала, то вероятность того, что в Теория вероятностей задачи с решением независимых испытаниях событие Теория вероятностей задачи с решением наступит ровно Теория вероятностей задачи с решением раз приближенно равна

Теория вероятностей задачи с решением

Вероятность отклонения относительной частоты от постоянной вероятности.

Вероятность того, что в Теория вероятностей задачи с решением независимых испытаниях, в каждом из которых вероятность появления события Теория вероятностей задачи с решением равна Теория вероятностей задачи с решением, абсолютная величина отклонения относительной частоты от вероятности появления события Теория вероятностей задачи с решением не превосходит положительного числа Теория вероятностей задачи с решением, приближенно равна

Теория вероятностей задачи с решением

Наивероятнейшее число появлений события в независимых испытаниях

Число Теория вероятностей задачи с решением называют наивероятнейшим, если вероятность того, что в Теория вероятностей задачи с решением независимых испытаниях событие Теория вероятностей задачи с решением наступит ровно Теория вероятностей задачи с решением раз не меньше вероятностей остальных возможных значений Теория вероятностей задачи с решением.

Наивероятнейшее число определяется из неравенства

Теория вероятностей задачи с решением

причем:

а) если число Теория вероятностей задачи с решением дробное, то существует одно наивероятнейшее число; Теория вероятностей задачи с решением, где Теория вероятностей задачи с решением — целая часть числа Теория вероятностей задачи с решением,

б) сели число Теория вероятностей задачи с решением — целое, то существуют два наивероятнейших числа Теория вероятностей задачи с решением и Теория вероятностей задачи с решением;

в) если Теория вероятностей задачи с решением — целое, то Теория вероятностей задачи с решением.

Задача №13

Прибор состоит из четырех узлов. Вероятность безотказной работы каждого узла равна 0,8. Узлы выходят из строя независимо друг от друга. Найти вероятность того, что выйдут из строя росно два узла.

Решение:

Для решения задачи используем формулу Бернулли.

Теория вероятностей задачи с решением

Задача №14

Вероятность поражения мишени при одном выстреле равна 0,8. Найти вероятность того, что при 100 выстрелах мишень будет поражена 75 раз.

Решение:

Решаем задачу с использованием локальной теоремы Лапласа.

Теория вероятностей задачи с решением

Задача №15

В гараже имеется 100 автомашин. Вероятность того, что в течение рабочего дня машина находится вне гаража, равна 0,8. Найти вероятность того, что вне гаража будут находиться от 70 до 85 машин.

Решение:

Для решения используем интегральную теорему Муавра-Лапласа. По условию задачи

Теория вероятностей задачи с решением

тогда

Теория вероятностей задачи с решением

Функция распределения и плотность распределения случайных величин

Краткие теоретические сведения

Случайной величиной Теория вероятностей задачи с решением называется действительная функция Теория вероятностей задачи с решением, определенная на пространстве элементарных исходов Теория вероятностей задачи с решением и такая, что при любых действительных .v определена вероятность события Теория вероятностей задачи с решением.

Функцией распределения вероятностей называется функция Теория вероятностей задачи с решением, равная вероятности того, что Теория вероятностей задачи с решением

Теория вероятностей задачи с решением

Функция распределения обладает следующими свойствами:

  1. Теория вероятностей задачи с решением
  2. Теория вероятностей задачи с решением
  3. Теория вероятностей задачи с решением — неубывающая функция.
  4. Теория вероятностей задачи с решением — непрерывная слева, т.е. Теория вероятностей задачи с решением.
  5. Вероятность попадания Теория вероятностей задачи с решением в интервал Теория вероятностей задачи с решением определяется формулой
Теория вероятностей задачи с решением

Теория вероятностей задачи с решением называется дискретной, если она принимает конечное или счетное количество значений.

Теория вероятностей задачи с решением называется непрерывной на Теория вероятностей задачи с решением, если она принимает все значения из этого интервала.

Законом распределения дискретной Теория вероятностей задачи с решением называется соответствие, но которому каждому возможному значению Теория вероятностей задачи с решением Теория вероятностей задачи с решением ставится в соответствие вероятность его появления Теория вероятностей задачи с решением. Закон распределения дискретной Теория вероятностей задачи с решением записывается в виде таблицы.

Теория вероятностей задачи с решением

Плотностью распределения называется функция Теория вероятностей задачи с решением, удовлетворяющая условию

Теория вероятностей задачи с решением

Плотность распределения обладает следующими свойствами:

Теория вероятностей задачи с решением
Теория вероятностей задачи с решением

Чтобы задать закон распределения непрерывной Теория вероятностей задачи с решением, нужно задать либо плотность распределения, либо функцию распределения.

Задача №16

Закон распределения дискретной Теория вероятностей задачи с решением имеет вид

Теория вероятностей задачи с решением

Найти функцию распределения.

Решение:

По определению Теория вероятностей задачи с решением. Тогда

Теория вероятностей задачи с решением

Задача №17

Непрерывная Теория вероятностей задачи с решением задана плотностью распределения

Теория вероятностей задачи с решением

Нужно определить значение параметра Теория вероятностей задачи с решением и найти Теория вероятностей задачи с решением.

Решение:

Для определения параметра Теория вероятностей задачи с решением воспользуемся свойством плотности распределения

Теория вероятностей задачи с решением
Теория вероятностей задачи с решением

Функцию распределения определим из соотношения Теория вероятностей задачи с решением.

  1. Если Теория вероятностей задачи с решением, то Теория вероятностей задачи с решением.
  2. Если Теория вероятностей задачи с решением. то Теория вероятностей задачи с решением
  3. Если Теория вероятностей задачи с решением, то Теория вероятностей задачи с решением

Таким образом,

Теория вероятностей задачи с решением

Задача №18

Дана функция распределения Теория вероятностей задачи с решением

Теория вероятностей задачи с решением

Требуется найти плотность распределения и вероятность попадания Теория вероятностей задачи с решением в интервал

Теория вероятностей задачи с решением

Решение:

Вероятность попадания Теория вероятностей задачи с решением в интервал Теория вероятностей задачи с решением определяется по формуле

Теория вероятностей задачи с решением

Если известна функция распределенияТеория вероятностей задачи с решением, то Теория вероятностей задачи с решением

Теория вероятностей задачи с решением

Числовые характеристики случайных величин

Пусть дискретная Теория вероятностей задачи с решением имеет следующий закон распределения

Теория вероятностей задачи с решением

Математическим ожиданием Теория вероятностей задачи с решением называется сумма произведений всех возможных значений Теория вероятностей задачи с решением на соответствующие вероятности

Теория вероятностей задачи с решением

Математическое ожидание обладает следующими свойствами:

Теория вероятностей задачи с решением

Математическое ожидание характеризует среднее значение Теория вероятностей задачи с решением.

Для непрерывной Теория вероятностей задачи с решением математическое ожидание вычисляется по формуле

Теория вероятностей задачи с решением

Начальным моментом Теория вероятностей задачи с решением-го порядка называется математическое ожидание Теория вероятностей задачи с решением, т.е. Теория вероятностей задачи с решением. Начальные моменты Теория вероятностей задачи с решением-го порядка для дискретных и непрерывных Теория вероятностей задачи с решением вычисляются соответственно по формулам

Теория вероятностей задачи с решением

Центральным моментом Теория вероятностей задачи с решением-го порядка называется математическое ожидание Теория вероятностей задачи с решением

Теория вероятностей задачи с решением

Для дискретных и непрерывных Теория вероятностей задачи с решением центральный момент Теория вероятностей задачи с решением-го порядка вычисляется по формулам:

Теория вероятностей задачи с решением

Дисперсией Теория вероятностей задачи с решением называется центральный момент второго порядка

Теория вероятностей задачи с решением

Дисперсия характеризует степень разброса значений Теория вероятностей задачи с решением относительно математического ожидания. Дисперсия обладает следующими свойствами:

Теория вероятностей задачи с решением

Дисперсия Теория вероятностей задачи с решением равна разности математического ожидания квадрата Теория вероятностей задачи с решением и квадрата математического ожидания

Теория вероятностей задачи с решением

Средним квадратическим ожиданием Теория вероятностей задачи с решением называется корень квадратный из дисперсии

Теория вероятностей задачи с решением

Задача №19

Дискретная Теория вероятностей задачи с решением задана законом распределения

Теория вероятностей задачи с решением

Вычислить

Теория вероятностей задачи с решением

Решение:

Теория вероятностей задачи с решением

Дисперсию вычислим по формуле

Теория вероятностей задачи с решением

Задача №20

Непрерывная Теория вероятностей задачи с решением задана функцией распределения

Теория вероятностей задачи с решением

Вычислить

Теория вероятностей задачи с решением

Решение:

Найдем плотность распределения

Теория вероятностей задачи с решением

Вычислим математическое ожидание

Теория вероятностей задачи с решением

Дисперсия определяется по формуле

Теория вероятностей задачи с решением

Законы распределения дискретных случайных величин

Дискретная Теория вероятностей задачи с решением называется распределенной по биномиальному закону, если она принимает конечное число значений Теория вероятностей задачи с решением с вероятностями, которые определяются по формуле Бернулли

Теория вероятностей задачи с решением

Для дискретной Теория вероятностей задачи с решением, распределенной по биномиальному закону, справедливы следующие соотношения

Теория вероятностей задачи с решением

Дискретная Теория вероятностей задачи с решением называется распределенной по закону Пуассона, если она принимает счетное число значений Теория вероятностей задачи с решением с вероятностями, которые определяются по формуле Пуассона

Теория вероятностей задачи с решением

Для дискретной Теория вероятностей задачи с решением, распределенной по закону Пуассона справедливы соотношения

Теория вероятностей задачи с решением

Задача №21

О сигнализации о пожаре установлено три независимо работающих устройства. Вероятность того, что при пожаре сработает каждое устройство постоянна и равна 0,9. Теория вероятностей задачи с решением равна количеству срабатывающих устройств при пожаре. Требуется составить закон распределения Теория вероятностей задачи с решением и вычислить Теория вероятностей задачи с решением.

Решение:

Теория вероятностей задачи с решением принимает значение 0; 1; 2; 3. Определим вероятности Теория вероятностей задачи с решением по формуле (8.1).

Теория вероятностей задачи с решением

Проверка:

Теория вероятностей задачи с решением

Закон распределения Теория вероятностей задачи с решением имеет вид

Теория вероятностей задачи с решением

Вычислим

Теория вероятностей задачи с решением

Законы распределения непрерывных случайных величин

Непрерывная Теория вероятностей задачи с решением называется равномерно распределенной на Теория вероятностей задачи с решением, если плотность распределения вероятностей имеет вид

Теория вероятностей задачи с решением

Для Теория вероятностей задачи с решением. равномерно распределенной на Теория вероятностей задачи с решением, справедливы следующие соотношения:

Теория вероятностей задачи с решением

Непрерывная Теория вероятностей задачи с решением называется распределенной но показательному закону, если плотность распределения вероятностей имеет вид

Теория вероятностей задачи с решением

Для Теория вероятностей задачи с решением, распределенной по показательному закону, справедливы следующие соотношения

Теория вероятностей задачи с решением

Функция

Теория вероятностей задачи с решением

определяет вероятность отказа за время Теория вероятностей задачи с решением.

Вероятность безотказной работы за это время будет равна

Теория вероятностей задачи с решением

Функцию Теория вероятностей задачи с решением называют функцией надежности.

Непрерывная Теория вероятностей задачи с решением называется распределенной по нормальному закону, если плотность распределения вероятностей имеет вид

Теория вероятностей задачи с решением

Для нормально распределенной Решение задач по теории вероятностей справедливы следующие соотношения:

Решение задач по теории вероятностей

Задача №22

Решение задач по теории вероятностей распределена равномерно на (3;5). Требуется найти:

Решение задач по теории вероятностей

Решение:

На основании формул (9.1) и (9.2) имеем

Решение задач по теории вероятностей

Задача №23

Решение задач по теории вероятностей распределенная по показательному закону, имеет функцию распределения вида

Решение задач по теории вероятностей

Вычислить

Решение задач по теории вероятностей

Решение:

Согласно формуле (9.4) Решение задач по теории вероятностей. Тогда

Решение задач по теории вероятностей

Задача №24

Решение задач по теории вероятностей распределена по нормальному закону с параметрами

Решение задач по теории вероятностей

Требуется: 1) записать Решение задач по теории вероятностей и Решение задач по теории вероятностей; 2) вычислить

Решение задач по теории вероятностей

Решение:

Согласно формулам (9.5) и (9.6) имеем

Решение задач по теории вероятностей

Предельные теоремы теории вероятностей

Неравенство Чебышева. Вероятность того, что отклонение Решение задач по теории вероятностей от ее математического ожидания по модулю меньше данного числа Решение задач по теории вероятностей не менее, чем Решение задач по теории вероятностей

Решение задач по теории вероятностей

Теорема Чебышева. Пусть даны Решение задач по теории вероятностей, которые попарно независимы, имеют математические ожидания Решение задач по теории вероятностей и дисперсии, ограниченные одним и тем же числом Решение задач по теории вероятностей. Тогда для любого числа Решение задач по теории вероятностей выполняется неравенство

Решение задач по теории вероятностей

Если Решение задач по теории вероятностей имеют одно и то же математическое ожидание Решение задач по теории вероятностей, то неравенство (10.2) примет вид

Решение задач по теории вероятностей

Переходя в неравенство (10.3) к пределу при Решение задач по теории вероятностей, получим

Решение задач по теории вероятностей

В этом случае говорят, что при Решение задач по теории вероятностей последовательность Решение задач по теории вероятностей сходится по вероятности к своему математическому ожиданию Решение задач по теории вероятностей.

Теорема Бернулли. Если в каждом из Решение задач по теории вероятностей независимых испытаний вероятность Решение задач по теории вероятностей появления события Решение задач по теории вероятностей постоянна, то вероятность того, что отклонение относительной частоты Решение задач по теории вероятностей от вероятности Решение задач по теории вероятностей по модулю не превзойдет положительного числа Решение задач по теории вероятностей больше чем разность Решение задач по теории вероятностей

Решение задач по теории вероятностей

Переходя в неравенство (10.5) к пределу при Решение задач по теории вероятностей, получим

Решение задач по теории вероятностей

При большом числе испытаний относительная частота Решение задач по теории вероятностей события Решение задач по теории вероятностей сходится по вероятности к вероятности Решение задач по теории вероятностей появления события в отдельном испытании.

Центральная предельная теорема Ляпунова. Пусть Решение задач по теории вероятностей последовательность независимых Решение задач по теории вероятностей для каждой из которых существует математическое ожидание Решение задач по теории вероятностей и дисперсия Решение задач по теории вероятностей, центральный момент третьего порядка

Решение задач по теории вероятностей

и выполняется условие Ляпунова

Решение задач по теории вероятностей

Тогда при Решение задач по теории вероятностей распределение Решение задач по теории вероятностей стремится к нормальному закону с функцией распределения

Решение задач по теории вероятностей

Задача №25

Средняя длина детали равна 50 см, а дисперсия длины равна 0,1. Оценить вероятность того, что изготовленная деталь окажется по своей длине не менее 49,5 см. и не более 50,5 см.

Решение:

По условию задачи

Решение задач по теории вероятностей

Так как Решение задач по теории вероятностей непрерывна, то

Решение задач по теории вероятностей

Применяя неравенство (10.1), получим

Решение задач по теории вероятностей

Задача №26

При штамповке деталей брак составляет 3%. Найти вероятность того, что при проверке партии из 1000 деталей выявится отклонение от установленного процента брака меньше, чем на 1%.

Решение:

По условию задачи

Решение задач по теории вероятностей

Воспользуемся неравенством (10.5)

Решение задач по теории вероятностей

Задача №27

Складываются 48 попарно независимых Решение задач по теории вероятностей, распределенных по равномерному закону на интервале (0; 1). Записать приближенно функцию распределения суммы этих Решение задач по теории вероятностей. Найти вероятность того, что эта сумма будет заключена в пределах от 26 до 28.

Решение:

Решение задач по теории вероятностей

Обозначим

Решение задач по теории вероятностей
Решение задач по теории вероятностей

Тогда

Решение задач по теории вероятностей

и функция распределения Решение задач по теории вероятностей имеет вид

Решение задач по теории вероятностей

Найдем вероятность попадания Решение задач по теории вероятностей в интервал (26; 28).

Решение задач по теории вероятностей

Двумерные случайные величины. Законы распределения. Условные законы распределения

Двумерной Решение задач по теории вероятностей называется совокупность двух случайных величин Решение задач по теории вероятностей, описывающих тот или иной случайный эксперимент. Решение задач по теории вероятностей и Решение задач по теории вероятностей называются составляющими.

Если составляющие двумерной Решение задач по теории вероятностей являются дискретными Решение задач по теории вероятностей. то двумерная Решение задач по теории вероятностей называется дискретной, если составляющие являются непрерывными Решение задач по теории вероятностей. то двумерная Решение задач по теории вероятностей называется непрерывной. Если одна из составляющих является дискретной, а вторая — непрерывной, то двумерная величина называется сметанной.

Законом распределения дискретной двумерной Решение задач по теории вероятностей называется соответствие между всевозможными парами Решение задач по теории вероятностей и вероятностями их появления Решение задач по теории вероятностей. Закон распределения дискретных двумерных Решение задач по теории вероятностей задается в виде таблицы

Решение задач по теории вероятностей

Если известен закон распределения двумерной дискретной Решение задач по теории вероятностей, то законы распределения составляющих находятся следующим образом

Решение задач по теории вероятностей

Функцией распределения двумерной Решение задач по теории вероятностей называется вероятность события

Решение задач по теории вероятностей

Функция распределения вероятностей двумерной Решение задач по теории вероятностей обладает следующими свойствами:

  1. Решение задач по теории вероятностей
  2. Решение задач по теории вероятностей
  3. Решение задач по теории вероятностей
  4. Решение задач по теории вероятностей, где Решение задач по теории вероятностей — функции распределения составляющих Решение задач по теории вероятностей и Решение задач по теории вероятностей.
  5. Функция распределения Решение задач по теории вероятностей является не убывающей функцией по каждому из своих аргументов.

Функция Решение задач по теории вероятностей называется плотностью распределения вероятностей двумерной Решение задач по теории вероятностей, если она удовлетворяет соотношению

Решение задач по теории вероятностей

Плотность распределения вероятностей двумерной Решение задач по теории вероятностей обладает следующими свойствами:

Решение задач по теории вероятностей

Чтобы задать закон распределения непрерывной двумерной Решение задач по теории вероятностей, достаточно задать либо функцию распределения, либо плотность распределения.

Условным законом распределения называется закон распределения одной из составляющих при условии, что вторая составляющая приняла определенное значение. Для дискретных двумерных Решение задач по теории вероятностей условные вероятности определяются по формулам:

Решение задач по теории вероятностей

Условные плотности распределения находятся по формулам:

Решение задач по теории вероятностей

где Решение задач по теории вероятностей — плотности распределения составляющих Решение задач по теории вероятностей.

Составляющие Решение задач по теории вероятностей и Решение задач по теории вероятностей двумерной Решение задач по теории вероятностей называются независимыми, если

Решение задач по теории вероятностей

Задача №28

Двумерная дискретная Решение задач по теории вероятностей задана законом распределения

Решение задач по теории вероятностей

Требуется найти законы распределения составляющих и условный закон распределения составляющей Решение задач по теории вероятностей при условии, что Решение задач по теории вероятностей = 1.

Решение:

Законы распределения составляющих Решение задач по теории вероятностей и Решение задач по теории вероятностей найдем с использованием формул (11.1).

Решение задач по теории вероятностей

Тогда закон распределения составляющих Решение задач по теории вероятностей имеет вид

Решение задач по теории вероятностей

Аналогично находится закон распределения составляющей Решение задач по теории вероятностей.

Решение задач по теории вероятностей

Условный закон распределения составляющей Решение задач по теории вероятностей при условии, что Решение задач по теории вероятностей = 1, найдем с использованием формул (11.3).

Решение задач по теории вероятностей

Задача №29

Дана функция распределении двумерной Решение задач по теории вероятностей

Решение задач по теории вероятностей

Требуется найти плотность распределения Решение задач по теории вероятностей и условные плотности распределения

Решение задач по теории вероятностей

Решение:

Плотность распределения найдем, используя свойство 3 плотности распределения

Решение задач по теории вероятностей

Плотности распределения составляющих найдем, используя свойство 5 плотности распределения

Решение задач по теории вероятностей

Условные плотности распределения составляющих найдем с использованием формул (11.4)

Решение задач по теории вероятностей

Так как условные плотности распределения вероятностей совпадают с плотностями распределения составляющих, то составляющие являются независимыми Решение задач по теории вероятностей.

Числовые характеристики двумерных случайных величин. Коэффициент корреляции

Начальным моментом порядка Решение задач по теории вероятностей двумерной Решение задач по теории вероятностей называется математическое ожидание произведения Решение задач по теории вероятностей

Решение задач по теории вероятностей

Для непрерывных Решение задач по теории вероятностей

Решение задач по теории вероятностей

для дискретных

Решение задач по теории вероятностей

Центральным моментом порядка Решение задач по теории вероятностей двумерной Решение задач по теории вероятностей называется математическое ожидание произведения

Решение задач по теории вероятностей
Решение задач по теории вероятностей

Для непрерывной двумерной Решение задач по теории вероятностей центральный момент порядка Решение задач по теории вероятностей вычисляется по формуле

Решение задач по теории вероятностей

для дискретных Решение задач по теории вероятностей

Решение задач по теории вероятностей

Корреляционным моментом двумерной Решение задач по теории вероятностей называется центральный момент Решение задач по теории вероятностей. Для непрерывной Решение задач по теории вероятностей корреляционный момент вычисляется по формуле

Решение задач по теории вероятностей

для дискретных

Решение задач по теории вероятностей

Корреляционный момент характеризует тесноту связи между составляющими Решение задач по теории вероятностей и Решение задач по теории вероятностей. Коэффициентом корреляции Решение задач по теории вероятностей Решение задач по теории вероятностей и Решение задач по теории вероятностей называется отношение корреляционного момента к произведению средних квадратических отклонений составляющих

Решение задач по теории вероятностей

Коэффициент корреляции обладает следующими свойствами:

Решение задач по теории вероятностей

Если зависимость между Решение задач по теории вероятностей и Решение задач по теории вероятностей отсутствует, то Решение задач по теории вероятностей. Если Решение задач по теории вероятностей, то зависимость между Решение задач по теории вероятностей и Решение задач по теории вероятностей линейная. Решение задач по теории вероятностейи Решение задач по теории вероятностей, для которых Решение задач по теории вероятностей называются некоррелированными. Очевидно, что независимые Решение задач по теории вероятностей не коррелированы. Обратное утверждение верно лишь при условии нормального распределения двумерной Решение задач по теории вероятностей. Коэффициент корреляции вычисляется по формуле

Решение задач по теории вероятностей

Задача №30

Двумерная Решение задач по теории вероятностей задана таблицей

Решение задач по теории вероятностей

Вычислить коэффициент корреляции.

Решение:

Составим законы распределения составляющих

Решение задач по теории вероятностей

Вычислим математические ожидания и средние квадратические отклонения составляющих

Решение задач по теории вероятностей
Решение задач по теории вероятностей

Вычислим коэффициент корреляции по формуле (12.9)

Решение задач по теории вероятностей

Составляющие Решение задач по теории вероятностей и Решение задач по теории вероятностей являются некоррелированными Решение задач по теории вероятностей. Очевидно, что независимые Решение задач по теории вероятностей не коррелированы. Обратное утверждение верно лишь при условии нормального распределения двумерной Решение задач по теории вероятностей.

Задача №31

Непрерывная двумерная Решение задач по теории вероятностей задана плотностью распределения

Решение задач по теории вероятностей

Найти коэффициент корреляции.

Решение:

Найдем математические ожидания составляющих

Решение задач по теории вероятностей

Найдем дисперсии

Решение задач по теории вероятностей

Вычислим корреляционный момент

Решение задач по теории вероятностей

Коэффициент корреляции вычислим по формуле (12.8)

Решение задач по теории вероятностей

Статистическое распределение. Эмпирическая функция распределения и ее свойства. Полигон и гистограмма. Числовые характеристики выборки

Генеральной совокупностью называется совокупность элементов, объединенных по некоторому признаку, из которых производится выборка.

Выборочной совокупностью или выборкой называется совокупность объектов, случайно выбранных для исследования.

Объемом выборки называется количество объектов, входящих в выборку.

Пусть из совокупности извлечена выборка объемом п.

Выборочная совокупность, расположенная по возрастанию или убыванию значения признака, называется вариационным рядом, а сс объекты — вариантами.

Если значения вариант совпадают или отличаются незначительно, то их можно сгруппировать, придав частоту каждой варианте.

В результате получим сгруппированный вариационный ряд.

Частостью или относительной частотой варианты называется отношение частоты варианты к объему выборки

Решение задач по теории вероятностей

Статистическим распределением называется соответствие, по которому каждому возможному значению варианты ставится в соответствие частота (относительная частота) се появления. Статистическое распределение записывается в виде таблицы, в которой в первой строке перечислены все значения вариант, а во второй частоты или частости, которые соответствуют вариантам

Решение задач по теории вероятностей

Для построения интервального статистического ряда разбивают множество вариант на полуинтервалы Решение задач по теории вероятностей. т.е. производят группировку. Рекомендуется число интервалов Решение задач по теории вероятностей определять по формуле

Решение задач по теории вероятностей

Длина интервала равна

Решение задач по теории вероятностей

Для наглядности используются графические изображения вариционных рядов в виде полигона и гистограммы.

Полигоном частот или частостей называется ломаная линия, соединяющая точки с координатами

Решение задач по теории вероятностей

Гистограммой частот или частостей называют ступенчатую фигуру, составленную из прямоугольников с основанием Решение задач по теории вероятностей и высотой

Решение задач по теории вероятностей

Эмпирической функцией распределения называют функцию Решение задач по теории вероятностей, определяющую для каждого значения Решение задач по теории вероятностей относительную частоту события Решение задач по теории вероятностей:

Решение задач по теории вероятностей

где Решение задач по теории вероятностей — число вариант (с учетом их кратностей) меньших Решение задач по теории вероятностей — объем выборки. Эмпирическая функция распределения обладает следующими свойствами:

  1. Значения эмпирической функции принадлежат отрезку [0; l],
  2. Эмпирическая функция является неубывающей функцией.
  3. Если Решение задач по теории вероятностей наименьшее значение варианты, а Решение задач по теории вероятностей наибольшее значение варианты, то
Решение задач по теории вероятностей

Для описания выборки применяются такие числовые характеристики, как выборочная средняя, выборочная дисперсия, выборочное среднее квадратическое отклонение.

Выборочной средней называется среднее значение варианты, вычисленное по данным выборки

Решение задач по теории вероятностей

где Решение задач по теории вероятностей — частота варианты Решение задач по теории вероятностей.

Выборочной дисперсией называется дисперсия, вычисленная по данным выборки

Решение задач по теории вероятностей

Выборочная дисперсия равна разности между средним значением квадрата вариант и квадратом выборочного среднего

Решение задач по теории вероятностей

Выборочным средним квадратическим отклонением называется корень квадратный из выборочной дисперсии

Решение задач по теории вероятностей

Задача №32

По данному распределению выборки найти эмпирическую функцию распределения и построить полигон частот

Решение задач по теории вероятностей

.

Решение:

Определим объем выборки

Решение задач по теории вероятностей

Определим относительные частоты вариант

Решение задач по теории вероятностей
Решение задач по теории вероятностей

Запишем эмпирическую функцию распределения

Решение задач по теории вероятностей

Построим полигон частот

Решение задач по теории вероятностей

Задача №33

Построить гистограмму частостей по данным выборки объема 100 и вычислить числовые характеристики выборки.

Решение задач по теории вероятностей

Решение:

Вычислим относительные частоты по формуле

Решение задач по теории вероятностей

и найдем высоты прямоугольников по формуле

Решение задач по теории вероятностей

Вычисления сведем в таблицу

Решение задач по теории вероятностей

Построим гистограмму частостей

Решение задач по теории вероятностей

Вычислим числовые характеристики выборки

Решение задач по теории вероятностей

Вычислим

Решение задач по теории вероятностей
Решение задач по теории вероятностей

Точенные оценки неизвестных параметров распределения

Пусть изучается Решение задач по теории вероятностей с законом распределения, зависящим от одного или нескольких параметров. Требуется по выборке, полученной в результате Решение задач по теории вероятностей испытаний оценить неизвестный параметр Решение задач по теории вероятностей.

Точечной оценкой неизвестного параметра Решение задач по теории вероятностей теоретического распределения называется его приближенное значение, зависящее от данных выборки

Решение задач по теории вероятностей

Точечная оценка должна удовлетворять следующим требованиям:

  • оценка должна быть несмещенной, т.е.
Решение задач по теории вероятностей

оценка должна быть состоятельной, т.е. она должна сходиться по вероятности к оцениваемому параметру: для

Решение задач по теории вероятностей
  • оценка должна быть эффективной: если неизвестный параметр имеет несколько оценок, то в качестве оценки нужно брать оценку с наименьшей дисперсией.

Выборочная средняя Решение задач по теории вероятностей является несмещенной и состоятельной оценкой для математического ожидания генеральной совокупности.

Несмещенной и состоятельной оценкой для дисперсии генеральной совокупности является исправленная выборочная дисперсия

Решение задач по теории вероятностей

Исправленным средним квадратическим отклонением называется корень квадратный из исправленной дисперсии

Решение задач по теории вероятностей

Для вычисления Решение задач по теории вероятностей и Решение задач по теории вероятностей разработано много методов. Одним из наиболее распространенных методов является метод произведений. При вычислении выборочного среднего и выборочной дисперсии поступают следующим образом: выбираем «ложный нуль» Решение задач по теории вероятностей. В качестве «ложного нуля» берется варианта стоящая посредине вариационного ряда или варианта, имеющая максимальную частоту;

  • переходим к условным вариантам Решение задач по теории вероятностей по формулам Решение задач по теории вероятностей, где Решение задач по теории вероятностей — шаг разбиения;
  • вычисляем условные моменты 1 -ого и 2-ого порядков
Решение задач по теории вероятностей
  • вычисляем выборочное среднее Решение задач по теории вероятностей и выборочную дисперсию Решение задач по теории вероятностей
Решение задач по теории вероятностей

Задача №34

Методом произведений вычислить выборочную среднюю и выборочную дисперсию по данным выборки

Решение задач по теории вероятностей

Решение:

В качестве «ложного нуля» возьмем варианту 75, Решение задач по теории вероятностей = 75. Перейдем к условным вариантам по формуле Решение задач по теории вероятностей. Результаты вычислений сведем в таблицу.

Решение задач по теории вероятностей

Результаты вычислений можно проверить равенством

Решение задач по теории вероятностей

Равенство выполняется, следовательно, таблица заполнена верно. Вычислим условные моменты

Решение задач по теории вероятностей

Вычислим выборочную среднюю и выборочную дисперсию

Решение задач по теории вероятностей

Интервальные оценки

Пусть Решение задач по теории вероятностей — функция выборки. Это есть случайная величина, называемая статистикой.

Интервальной называют оценку, которая определяется случайным интервалом

Решение задач по теории вероятностей

В качестве интервальной оценки используются доверительные интервалы.

Доверительным интервалом для неизвестного параметра Решение задач по теории вероятностей, называется случайный интервал Решение задач по теории вероятностей, который с заданной вероятностью Решение задач по теории вероятностей (надежностью) накрывает неизвестный параметр, Решение задач по теории вероятностей.

Если исследуемая Решение задач по теории вероятностей распределена по нормальному закону с известным средним квадратическим отклонением Решение задач по теории вероятностей, то доверительный интервал для математического ожидания определяется неравенством

Решение задач по теории вероятностей

где Решение задач по теории вероятностей — точность оценки, Решение задач по теории вероятностей — объем выборки, Решение задач по теории вероятностей — значение аргумента функции Лапласа, при котором

Решение задач по теории вероятностей

Если среднее квадратическое отклонение неизвестно, то доверительный интервал для математического ожидания исследуемой Решение задач по теории вероятностей определяется неравенством

Решение задач по теории вероятностей

Значения Решение задач по теории вероятностей находят по таблице приложения 5 по заданным Решение задач по теории вероятностей и Решение задач по теории вероятностей. Число

Решение задач по теории вероятностей

называют точностью оценки математического ожидания.

Доверительный интервал для среднего квадратического отклонения исследуемой Решение задач по теории вероятностей определяется неравенством

Решение задач по теории вероятностей

Значения Решение задач по теории вероятностей и Решение задач по теории вероятностей находятся по таблице приложения 6 по заданным Решение задач по теории вероятностей и Решение задач по теории вероятностей.

Задача №35

Найти доверительный интервал для оценки с надежностью Решение задач по теории вероятностей неизвестного математического ожидания нормально распределенного признака Решение задач по теории вероятностей, если известно Решение задач по теории вероятностей, а по данным выборки объемом 100 вычислено Решение задач по теории вероятностей.

Решение:

Так как известно среднее квадратическое отклонение Решение задач по теории вероятностей то для определения доверительного интервала для математического ожидания воспользуемся неравенством (3.1). Определим значение

Решение задач по теории вероятностей

Подставим в неравенство (3.1)

Решение задач по теории вероятностей

Задача №36

Для исследования нормально распределенной Решение задач по теории вероятностей извлечена выборка объемом 25.

Решение задач по теории вероятностей

Найти с надежностью Решение задач по теории вероятностей доверительные интервалы для математического ожидания и среднего кадратического отклонения исследуемой Решение задач по теории вероятностей.

Решение:

По данным выборки методом произведений определим Решение задач по теории вероятностей и Решение задач по теории вероятностей

Решение задач по теории вероятностей

Проверка:

Решение задач по теории вероятностей
Решение задач по теории вероятностей

Для определения доверительного интервала для математического ожидания воспользуемся неравенством (3.2);

Решение задач по теории вероятностей

Для определения доверительного интервала для среднего квадратического отклонения воспользуемся неравенством (3.3):

Решение задач по теории вероятностей

Статистическая проверка гипотез. Критерии согласия Пирсона и Колмогорова

Статистической называется гипотеза о предполагаемом виде неизвестного распределения Решение задач по теории вероятностей или о значениях параметров известного вида распределения. Пулевой гипотезой Решение задач по теории вероятностей называется выдвинутая гипотеза. Конкурирующей (альтернативной) называется гипотеза, которая противоречит нулевой гипотезе. При проверке статистической гипотезы могут быть допущены ошибки двух родов. Ошибка первого рода — будет отклонена верная гипотеза. Ошибка второго рода — будет принята неверная гипотеза.

Вероятность допустить ошибку первого рода называется уровнем значимости. Для проверки статистической гипотезы используют специальную статистику, которая называется критерием.

По рассчитанному значению критерия определяют принимать или отвергать нулевую гипотезу.

Критерий согласия — это проверка гипотезы о виде распределения Решение задач по теории вероятностей.

Основными критериями согласия являются критерии Пирсона Решение задач по теории вероятностей и Колмохорова. При проверке гипотезы с помощью критерия Пирсона поступают следующим образом:

из генеральной совокупности извлекают выборку объемом Решение задач по теории вероятностей; по выборке вычисляют Решение задач по теории вероятностей и Решение задач по теории вероятностей:

переходят к нормированной Решение задач по теории вероятностей по формуле

Решение задач по теории вероятностей

находят вероятности попадания в интервал

Решение задач по теории вероятностей

вычисляют теоретические частоты

Решение задач по теории вероятностей

вычисляют статистику Пирсона

Решение задач по теории вероятностей

из таблицы критических точек распределения Пирсона (приложение 3) по уровню значимости Решение задач по теории вероятностей и числу степеней свободы

Решение задач по теории вероятностей

определяют Решение задач по теории вероятностей, где Решение задач по теории вероятностей — число интервалов в вариационном ряде, Решение задач по теории вероятностей — количество параметров закона распределения, которые оцениваются по выборке (для нормального закона Решение задач по теории вероятностей=2);

• если Решение задач по теории вероятностей то нет необходимости отвергать нулевую гипотезу, т.е. эмпирические и теоретические частоты согласуются;

• если Решение задач по теории вероятностей то гипотеза отвергается, т.е. расхождение между теоретическими и эмпирическими частотами существенно;

• если исследуется дискретная Решение задач по теории вероятностей, распределенная по нормальному закону, то теоретические вероятности определяются по формуле

Решение задач по теории вероятностей

где Решение задач по теории вероятностей — шаг,

Решение задач по теории вероятностей

Задача №37

Пользуясь критерием Пирсона, при уровне значимости Решение задач по теории вероятностей проверить, согласуется ли гипотеза о нормальном распределении генеральной совокупности с данными выборки

Решение задач по теории вероятностей

Решение:

По данным выборки методом произведений вычислим Решение задач по теории вероятностей и Решение задач по теории вероятностей.

Решение задач по теории вероятностей

Проверка:

Решение задач по теории вероятностей

Вычислим вероятности попадания в интервалы

Решение задач по теории вероятностей

Вычислим Решение задач по теории вероятностей

Решение задач по теории вероятностей

Определим число степеней свободы

Решение задач по теории вероятностей

По уровню значимости Решение задач по теории вероятностей и числу степеней свободы Решение задач по теории вероятностей найдем критическую точку правосторонней критической области распределения Пирсона (приложение 3)

Решение задач по теории вероятностей

Так как Решение задач по теории вероятностей, гипотеза о нормальном распределении совокупности отвергается.

Критерий согласия Колмогорова применяется для проверки гипотезы о законе распределения непрерывной Решение задач по теории вероятностей. Для статистической проверки гипотезы с помощью критерия согласия Колмогорова поступают следующим образом:

  • выбирают из генеральной совокупности выборку;
  • по выборке составляют эмпирическую функцию распределения Решение задач по теории вероятностей;
  • записывают теоретическую функцию распределения Решение задач по теории вероятностей;
  • вычисляют величину
Решение задач по теории вероятностей

вычисляют статистику Колмогорова

Решение задач по теории вероятностей

где Решение задач по теории вероятностей объем выборки. Решение задач по теории вероятностей имеет функцию распределения

Решение задач по теории вероятностей

которая называется функцией Колмогорова;

находим по уровню значимости Решение задач по теории вероятностей (приложение 7);

  • если Решение задач по теории вероятностей, то гипотеза о законе распределения Решение задач по теории вероятностей отклоняется, если Решение задач по теории вероятностей, то нет оснований отклонять нулевую гипотезу.

Рассмотрим применение критерия Колмогорова на примере.

Задача №38

Проверить по критерию Колмогорова гипотезу о нормальном распределении Решение задач по теории вероятностей но данным выборки при уровне значимости Решение задач по теории вероятностей.

Решение задач по теории вероятностей

Решение:

Вычислим выборочную среднюю Решение задач по теории вероятностей и исправленное среднее квадратическое отклонение Решение задач по теории вероятностей.

Решение задач по теории вероятностей

Тогда теоретическая функция распределения в предположении, что Решение задач по теории вероятностей распределена по нормальному закону, имеет вид

Решение задач по теории вероятностей

где Решение задач по теории вероятностей — функция Лапласа.

Эмпирическую функцию распределения определим по формуле

Решение задач по теории вероятностей

где Решение задач по теории вероятностей сумма частот вариант меньших Решение задач по теории вероятностей.

Решение задач по теории вероятностей

Вычислим величину

Решение задач по теории вероятностей
Решение задач по теории вероятностей

Вычислим статистику Колмогорова

Решение задач по теории вероятностей

По уровню значимости Решение задач по теории вероятностей найдем по таблице (приложение 7) Решение задач по теории вероятностей. Т.к. Решение задач по теории вероятностей, то нет оснований отвергать гипотезу о нормальном распределении.

Выборочный коэффициент корреляции и его свойства

Проверка гипотезы о равенстве нулю коэффициента корреляции Краткие теоретические сведения

Для вычисления выборочного коэффициента корреляции данные представляются в виде корреляционной таблицы. Корреляционная таблица представляет собой таблицу следующего вида: в первой строке записаны наблюдаемые значения Решение задач по теории вероятностей, в первом столбце записаны наблюдаемые значения Решение задач по теории вероятностей, на пересечении Решение задач по теории вероятностей-той строки и Решение задач по теории вероятностей-го столбца записывается частота Решение задач по теории вероятностей появления пары Решение задач по теории вероятностей. В последнем столбце записывается частота появления варианты Решение задач по теории вероятностей, в последней строке — частота появления варианты Решение задач по теории вероятностей на пересечении последней строки и последнего столбца записывается суммарное количество наблюдений. Корреляционная таблица имеет вид

Решение задач по теории вероятностей

Основной оценкой тесноты связи между случайными величинами Решение задач по теории вероятностей и Решение задач по теории вероятностей служит выборочный коэффициент корреляции Решение задач по теории вероятностей который определяется так

Решение задач по теории вероятностей

где Решение задач по теории вероятностей — среднее арифметическое произведений значений Решение задач по теории вероятностей.

Свойства выборочного коэффициента корреляции аналогичны свойствам коэффициента корреляции между Решение задач по теории вероятностей:

  1. Решение задач по теории вероятностей;
  2. если переменные Решение задач по теории вероятностей и Решение задач по теории вероятностей умножить на одно и то же число, то коэффициент корреляции не изменится;
  3. если Решение задач по теории вероятностей, то корреляционная связь между значениями Решение задач по теории вероятностей и Решение задач по теории вероятностей представляет собой линейную функциональную зависимость.

Для вычисления выборочного коэффициента корреляции применяется формула

Решение задач по теории вероятностей

Если Решение задач по теории вероятностей, то между наблюдаемыми значениями Решение задач по теории вероятностей и Решение задач по теории вероятностей корреляционная зависимость отсутствует, чем ближе к единице приближается модуль коэффициента корреляции, тем теснее связь между переменными Решение задач по теории вероятностей и Решение задач по теории вероятностей. Т.к. выборочный коэффициент корреляции вычисляется по данным выборки, то в отличие от коэффициента корреляции генеральной совокупности Решение задач по теории вероятностей является случайной величиной. Если Решение задач по теории вероятностей то возникает вопрос, объясняется ли это действительно существующей связью между Решение задач по теории вероятностей и Решение задач по теории вероятностей или вызвано случайными факторами. Для выяснения этого вопроса проверяется гипотеза Решение задач по теории вероятностей о равенстве нулю коэффициента корреляции Решение задач по теории вероятностей генеральной совокупности.

Для того, чтобы при уровне значимости Решение задач по теории вероятностей проверить нулевую гипотезу о равенстве нулю коэффициента корреляции генеральной двумерной нормальной совокупности, вычисляют статистику

Решение задач по теории вероятностей

и по таблице критических точек распределения Стьюдента (приложение 4) по уровню значимости а и числу степеней свободы Решение задач по теории вероятностей находят

Решение задач по теории вероятностей

критическую точку двусторонней критической области. Если

Решение задач по теории вероятностей

нет оснований отвергать нулевую гипотезу, т.е. Решение задач по теории вероятностей; если

Решение задач по теории вероятностей

нулевую гипотезу отвергают, т.е. Решение задач по теории вероятностей. Рассмотрим вычисление выборочною коэффициента корреляции и проверку гипотезы о равенстве нулю коэффициента корреляции генеральной совокупности на примере.

Задача №39

По данной корреляционной таблице вычислить выборочный коэффициент корреляции и при уровне значимости Решение задач по теории вероятностей проверить гипотезу о равенстве нулю коэффициента корреляции генеральной совокупности.

Решение задач по теории вероятностей

Решение:

Вычислим компоненты, входящие в формулу (5.1), для вычисления Решение задач по теории вероятностей

Решение задач по теории вероятностей

Вычислим выборочный коэффициент корреляции

Решение задач по теории вероятностей

Проверим гипотезу о равенстве нулю коэффициента корреляции генеральной совокупности. Вычислим

Решение задач по теории вероятностей

По таблице критических точек распределения Стыодента (приложение 4) по уровню значимости Решение задач по теории вероятностей и числу степеней свободы Решение задач по теории вероятностей найдем

Решение задач по теории вероятностей

Так

Решение задач по теории вероятностей

то гипотеза о равенстве нулю коэффициента корреляции генеральной совокупности отвергается, т.е. выбранный коэффициент корреляции значим.

Кстати готовые задачи на продажу по предмету теория вероятности тут.

Линейная регрессия. Определение параметров линейной регрессии

Если обе линии регрессии Решение задач по теории вероятностей на Решение задач по теории вероятностей и Решение задач по теории вероятностей на Решение задач по теории вероятностей являются прямыми, то в этом случае корреляцию называют линейной. Выборочное уравнение прямой линии регрессии Решение задач по теории вероятностей на Решение задач по теории вероятностей имеет вид

Решение задач по теории вероятностей

Уравнение прямой регрессии Решение задач по теории вероятностей на Решение задач по теории вероятностей имеет вид

Решение задач по теории вероятностей

Здесь Решение задач по теории вероятностей — значения Решение задач по теории вероятностей — их выборочные средние.

Коэффициент уравнений (6.1)-(6.2) можно также определить по формулам, полученным методом наименьших квадратов. Например, если уравнение (6.1) взять в виде Решение задач по теории вероятностей, то параметры Решение задач по теории вероятностей и Решение задач по теории вероятностей линейной регрессии имеют вид:

Решение задач по теории вероятностей

Задача №41

Распределение 40 заводов отрасли по количеству слесарей Решение задач по теории вероятностей и числу станкосмен Решение задач по теории вероятностей задано корреляционной таблицей.

Решение задач по теории вероятностей

Составить уравнение прямой регрессии Решение задач по теории вероятностей на Решение задач по теории вероятностей.

Решение:

По корреляционной таблице вычислим

Решение задач по теории вероятностей

Подставим вычисленные значения в уравнение (6.1)

Решение задач по теории вероятностей

Задача №42

При эталонировании медного термометра изучалась зависимость электрического сопротивления Решение задач по теории вероятностей от температуры Решение задач по теории вероятностей. Были получены следующие результаты

Решение задач по теории вероятностей

Оценить параметры уравнения регрессии с помощью метода наименьших квадратов и записать уравнение регрессии Решение задач по теории вероятностей на Решение задач по теории вероятностей.

Решение:

Сведем результаты вычисления в таблицу.

Решение задач по теории вероятностей

Параметры линейной регрессии определим по формулам (6.3)

Решение задач по теории вероятностей

Эмпирическое уравнение регрессии Решение задач по теории вероятностей на Решение задач по теории вероятностей примет вид

Решение задач по теории вероятностей
Решение задач по теории вероятностей
Решение задач по теории вероятностей
Решение задач по теории вероятностей
Решение задач по теории вероятностей
Решение задач по теории вероятностей
Решение задач по теории вероятностей
Решение задач по теории вероятностей
Решение задач по теории вероятностей

Возможно эти страницы вам будут полезны: