Оглавление:
Прежде чем изучать готовые решения задач, нужно знать теорию, поэтому для вас я подготовила очень краткую теорию по предмету «теоретическая механика», а после каждой темы размещены задачи с решением.
Эта страница подготовлена для студентов любых специальностей и охватывает все темы предмета «теоретическая механика».
Если что-то непонятно — вы всегда можете написать мне в WhatsApp и я вам помогу! |
Теоретическая механика
Теоретическая механика (в обиходе — теормех, реже — термех) — наука об общих законах механического движения и взаимодействия материальных тел.
По существу теоретическая механика часть физики, она впитала в себя фундаментальную основу в виде аксиоматики, выделилась как самостоятельная наука и получила широкое развитие благодаря своим обширным и важным прикладным разработкам в области естествознания и техники, одной из основ которых она является.
Многие общие инженерные дисциплины, такие как сопротивление материалов, строительная механика, гидравлика, теория машин и механизмов, части машин и другие основываются на основных законах и принципах теоретической механики. Многие инженерные задачи решаются на основе теорем и принципов теоретической механики, проектируются новые машины, конструкции и сооружения.
Задачи кинематики
Основной задачей теоретической механики является описание движений механических систем, происходящих под действием заданных сил. Такое описание может -быть полностью дано только в динамике системы материальных точек. Все остальные разделы теоретической механики либо решают частные, задачи, либо являются подготовкой «к решению основной задачи. Последнее больше всего относится к кинематике. Хотя в кинематике имеются свои самостоятельные интересные задачи, все же основная ее цель—подготовка материала для решения задач динамики. В кинематике изучаются движения системы материальных точек без учета причин, вызывающих эти движения. Все такие движения подчиняются определенным правилам и законам; их можно систематизировать в следующем порядке:
- Скорость и ускорение материальной точки в простейших движениях.
- Сложное движение -материальной точки. Теорема о сложении скоростей для одной -материальной точки.
- Теорема Эйлера о распределении скоростей в твердом теле.
- Теорема Кориолиса об ускорении материальной точки в сложном движении.
- Распределение ускорений в твердом теле.
Первый из перечисленных разделов изучает элементарные свойства движения материальной точки, зависимость между координатами материальной точки, возможные скорости и ускорения материальной точки в простейших движениях. Особое внимание следует обратить на определение проекций ускорения материальной точки на различные системы осей и главное — на естественные оси координат.
Второй раздел изучает сложное движение материальной точки в рассматриваемый момент времени (мгновенное состояние движения ‘материальной точки). Наиболее важным является вопрос об определении переносной и относительной скоростей материальной точки и о выборе подвижной системы отсчета. Теорема о сложении скоростей является одной из важнейших теорем кинематики. Она служит основой и при изучении распределения скоростей в твердом теле.
Теорема Эйлера о распределении скоростей в твердом теле может быть представлена формулой
Наиболее существенными здесь являются представления о сложном движении твердого тела в рассматриваемый момент времени и о мгновенных состояниях движения твердого тела (рассматривается лишь состояние скоростей точек твердого тела в данный момент времени). Как частные случаи рассматриваются плоскопараллельное движение твердого тела и случай движения твердого тела с одной неподвижной точкой.
Теорема Корнолиса об ускорении материальной точки в сложном движении и формула Ривальса о распределении ускорений в твердом теле дают представление об ускорениях точек в сложном движении. Теорема Кориолиса определяет переход от одной системы координат к другой при нахождении ускорения материальной точки (системы движутся относительно друг друга). Наиболее важным является вопрос об определении -переносного ускорения материальной точки при выборе различных систем отсчета. Переносное движение не зависит от характера относительного движения материальной точки.
Формула Ривальса раскрывает характер теоремы Кориолиса, давая полное представление об определении ускорения точки подвижной системы Отсчета.
В дальнейшем при решении задач будем придерживаться представленной здесь последовательности изложения, демонстрируя на простых задачах все преимущества того или иного метода.
Скорость и ускорение материальной точки и простейших движениях
Первыми понятиями, связанными с представлениями о движении материальной точки, с которыми мы встречаемся в кинематике, являются понятия скорости и ускорения материальной точки в пространстве и характер изменения ее параметров. В ряде случаев ‘параметры, определяющие положение материальной точки, находятся в некоторой сложной зависимости, которую необходимо раскрыть для полного определения движения материальной точки.
Рассмотрим несколько задач на раскрытие таких зависимостей, которые могут быть представлены в виде тождественных соотношений между параметрами, определяющими положения различных материальных точек.
Готовые задачи с решением:
- Задача №1. Нить закреплена одним концом в неподвижной точке и продета через кольцо , скользящее с постоянной скоростью по неподвижному стержню . Другой конец нити привязан к ползуну , скользящему по вертикальному стержню (рис. 1). Длина нити равна , расстояние . Определить скорость ползуна в зависимости от расстояния.
- Задача №2. Ползун приводится в движение вдоль стержня при помощи нити, продетой через неподвижное кольцо и наматывающейся на колесо, вращающееся с постоянной угловой скоростью (рис.-2). Определить скорость ползуна как функцию расстояния , если , а радиус колеса равен.
- Задача №3. Ползун приводится о движение посредством нити, наматывающейся на шкив радиуса . Определить скорость ползуна в зависимости от расстояния , если угловая скорость шкива равна (рис. 3).
- Задача №4. Точка описывает плоскую кривую так, что проекция ее скорости на ось сохраняет все время постоянную величину . Зная радиус кривизны траектории и скорость точки в каждый момент времени определить величину и направление ускорения этой точки.
- Задача №5. Точка описывает плоскую траекторию. Зная радиус кривизны этой траектории и скорость изменения угла, образуемого вектором скорости с некоторой неподвижной прямой, определить скорость точки.
- Задача №6. Определить тангенциальную и нормальную составляющие ускорения материальной точки, движение которой задано уравнениями
- Задача №7. Точка движется по винтовой линии с постоянной по величине скоростью . Определить величину и направление ускорения и радиус кривизны траектории точки.
- Задача №8. Точка описывает плоскую кривую. Радиальная составляющая скорости точки положительна и постоянна по величине, а радиальная составляющая ускорения отрицательна и обратно пропорциональна кубу расстояния от некоторого полюса. Определить траекторию и секторную скорость точки.
- Задача №9. Пользуясь формулами для ускорения точки о полярной системе координат, доказать, что если ускорение точки равно нулю, точка будет совершать равномерное и прямолинейное движение.
Сложное движение материальной точки
Теорема о сложении скоростей
Теорема о сложении скоростей является одной из основных теорем кинематики. Она утверждает, что абсолютная скорость материальной точки, участвующей в сложном движении, в каждый момент времени равна геометрической сумме ее переносной и относительной скоростей. Математически эта теорема может быть представлена формулой
где переносной скоростью v€ называется скорость той точки подвижной системы координат, с которой в данный момент совпадает движущаяся материальная точка. Таким образом, переносная скорость зависит не от характера относительного движения материальной точки, а лишь от движения подвижной системы отсчета и от положения материальной точки в данный момент времени. Относительной скоростью vr материальной точки называется ее скорость в движении относительно подвижной системы координат. В общем случае подвижная система координат совершает некоторое сложное движение, а скорости различных точек этой подвижной системы будут различными и по величине, и по направлению. Это обстоятельство необходимо иметь в виду при .определении переносной скорости. Наибольшие затруднения при решении задач этого раздела, ло-вичимому, заключаются в выборе подвижной системы отсчета.
В ряде случаев сложное движение материальной точки определяется одновременно относительно двух подвижных •систем отсчета. При этом полное решение задачи может быть найдено только при учете движеиия обеих подвижных систем отсчета. Рассмотрим несколько задач, поясняющих это утверждение.
Готовые задачи с решением:
- Задача №10. Плоская материальная кривая, уравнение которой, отнесенное к подвижной системе отсчета, имеет вид , движется в своей плоскости поступательно справа налево с постоянной скоростью . Палочка , длина которой равна , шарнирно закреплена одним концом в неподвижной точке и опирается на эту кривую другим (свободным) концом. Определить угловую скорость палочки в зависимости от положения системы (рис. 13).
- Задача №11. Палочка длины а вращается в плоскости чертежа вокруг неподвижной точки с постоянной угловой скоростью (рис. 14). Вокруг подвижного конца этой палочки в той же плоскости вращается другая палочка длины так, что угол , заключенный между палочками, изменяется по закону где постоянна по величине. Определить абсолютную скорость точки , применяя теорему о сложении скоростей.
- Задача №12. Лодку , уносимую течением реки, подтягивают веревкой к точке берега. Найти траекторию лодки, принимая последнюю за точку и считая, что скорость течения реки постоянна по всей ее ширине, скорость наматывания веревки постоянна по величине и равна и скорость лодки относительно реки все время направлена вдоль веревки (рис. 16).
- Задача №13. Рассмотренный выше метод построения абсолютной скорости может быть применен для определения направления касательных к кривым, если иметь в виду, что вектор абсолютной скорости всегда направлен по касательной к траектории точки. Для определения направления абсолютной скорости движения материальной точки представляют как сумму двух более простых движений, направление которых известно. Пусть, например, требуется построить касательную к эллипсу.
Кинематика твердого тела
Распределение скоростей в твердом теле
Мгновенное состояние движения твердого тела определяется распределением скоростей точек твердого тела в данный момент времени. Из теоремы Эйлера известно, что в общем случае мгновенное движение твердого тела всегда можно представить как сложное, состоящее .из двух простейших движений: мгновенно-поступательного и мгновенно-вращательного. Скорости точек твердого тела в общем случае определяются по формуле
где — скорость мгновенно-поступательного движения;
— мгновенная угловая скорость вращения твердого тела.
В случае плоскопараллельного движения твердого тела картина распределения скоростей значительно упрощается. В этом случае мгновенное движение твердого тела сводится либо к одному мгновенно-поступательному, либо к одному мгновеновращательному движению. Изучение движения сводится к рассмотрению движения плоской фигуры в своей плоскости, а непрерывное движение может быть «представлено как качение без скольжения подвижной центроиды по неподвижной. Такое ‘представление движения в ряде случаев оказывается весьма удобным, а потому важно научиться определять положения мгновенного центра вращения и центроиды. Мгновенный центр вращения определяется как точка твердого тела, скорость которой равна нулю в рассматриваемый момент времени.
Готовые задачи с решением:
- Задача №14. Определить положения мгновенного центра вращения и центроиды звена шарнирного антипараллелограмма , большое звено которого остается неподвижным во все время движения, если известно, что .
- Задача №15. Жесткий угол (рис. 32) движется в своей плоскости так, что сторона все время проходит через неподвижную точку , а сторона — через неподвижную точку . Найти центроиды этого движения.
- Задача №16. Прямолинейный стержень скользит своими концами по двум взаимно перпендикулярным направляющим и вращающимся вокруг точки с постоянной угловой скоростью . Угол наклона стержня к оси изменяется по закону. Определить абсолютную траекторию произвольной точки стержня.
- Задача №17. Твердое тело совершает сложное движение, которое сводится к трем мгновенным вращениям вокруг трех осей, расположенных по двум сторонам и одной диагонали квадрата (как указано на рис. 55), причем угловые скорости соответственно пропорциональны длинам сторон и диагонали квадрата. Привести эту систему мгновенных вращений к одному мгновенному вращению и найти результирующую угловую скорость вращения.
- Задача №18. По неподвижному круговому конусу с углом при вершине, равным , катится без скольжения другой круговой конус с углом при вершине, равным , так, что ось симметрии последнего вращается вокруг оси симметрии не-подвижного конуса с постоянной угловой скоростью ooj. Определить абсолютную угловую скорость вращения подвижного конуса и найти аксоиды.
- Задача №19. Горизонтальные колеса I и II дифференциального механизма вращаются вокруг одной и той же вертикальной оси соответственно со скоростями и . Определить мгновенную угловую скорость вращения планетного колеса III, ось которого может свободно вращаться вокруг оси (рис. 60).
Теорема Кориолиса об ускорении материальной точки в сложном движении. Распределение ускорений в твердом теле
Зависимость между ускорениями материальной точки, определяемыми в подвижной и неподвижной системах отсчета, определяется теоремой Кориолиса. По этой теореме абсолютное ускорение материальной точки равно геометрической сумме ускорений: переносного, относительного и добавочного (кориолисова ускорения), то есть
Под переносным ускорением . понимают ускорение той точки (подвижной системы отсчета, с которой в данный момент совпадает изучаемая материальная точка. Относительным ускорением
называют ускорение, материальной точки в ее движении относительно подвижной системы отсчета. Добавочным ускорением
называют ускорение, равное удвоенному векторному произведению мгновенной угловой скорости вращения подвижной системы отсчета на относительную скорость материальной точки, то есть
Наибольшие затруднения возникают >при определении переносного и добавочного ускорений. Определение переносного ускорения связано с представлением о движении твердого тела, так как всякую точку подвижной системы отсчета всегда можно рассматривать как точку некоторого твердого тела, жестко связанного с этой подвижной системой отсчета. Ускорения же точек твердого тела определяются по формуле Ривальса, на основании которой ускорение произвольной точки твердого тела равно геометрической сумме ускорения некоторого «полюса, за который может быть принята любая точка твердого тела, вращательного и осестремительного ускорений, то есть
Обычно в качестве полюса выбирается та точка твердого тела, ускорение которой может быть определено без излишних затруднений. Вращательное ускорение определяется по формуле
где — вектор углового ускорения твердого тела, то есть
Производная здесь берется_’по отношению к неподвижной системе отсчета, а вектор определяет положение точки
относительно подвижной системы координат, движущейся поступательно вместе с полюсом. Осестремительные ускорение можно определить по формуле
где — абсолютная угловая скорость вращения твердого тела в рассматриваемый момент времени. Пользуясь тем, что
— скользящий вектор, можно показать, что вектор
направлен к линии действия вектора
, ортогонален к ней, а его величина пропорциональна расстоянию точки
от линии действия вектора
.
Готовые задачи с решением:
- Задача №20. Пользуясь теоремой Кориолиса, определим ускорение материальной точки в полярной системе координат. Воспользуемся следующей схемой. Пусть движение -материальной точки по палочке «происходит то произвольному закону (рис. 63). Будем предполагать, что палочка вращается
- Задача №21. Палочка длины а скользит своими концами и по неподвижным вертикальной и горизонтальной прямым так, что ее конец движется с постоянной скоростью (рис. 64). По палочке движется материальная точка с постоянной относительной скоростью . Определить абсолютное ускорение материальной точки , принимая в качестве параметра, определяющего положение палочки, угол , который она образует с вертикалью.
- Задача №22. Окружность радиуса (рис. 65) вращается в своей плоскости вокруг своей неподвижной точки с постоянной угловой скоростью против часовой стрелки. Стержень вращается в той же плоскости вокруг точки с постоянной угловой скоростью по часовой стрелке. На стержень и на окружность надето колечко . Определить скорость и ускорение колечка в зависимости от ее-личины угла , который образует радиус окружности со стержнем.
- Задача №23. Палочка скользит своим концом по окружности радиуса и проходит через точку этой окружности. Определить ускорение точки палочки, рас-положенной на расстоянии от конца , если точка движется с постоянной по величине скоростью (рис. 66).
- Задача №24. Окружность радиуса катится без скольжения по неподвижной окружности радиуса так, что скорость ее центра остается постоянной по величине и равна во все время движения. Определить ускорение точки окружности, совпадающей в данный момент с положением мгновенного центра вращения, и ускорение точки , расположенной на противоположном конце диаметра, проходящего через точку .
- Задача №25. Полый цилиндр радиуса вращается вокруг своей неподвижной оси симметрии с постоянной угловой скоростью . По внутренней поверхности этого цилиндра катится без скольжения другой цилиндр радиуса с постоянной относительной угловой скоростью (как показано на рис. 67). Определить ускорение точки малого цилиндра, совпадающей в рассматриваемый момент времени с осью большого.
- Задача №26. Прямой круговой конус II с углом при вершине катится без скольжения по внешней стороне неподвижного конуса I с углом при вершине . При этом ось симметрии подвижного конуса вращается вокруг оси симметрии неподвижного конуса с постоянной скоростью угловой . Определить абсолютное ускорение самой верхней точки М основания подвижного конуса.
- Задача №27. Диск радиуса катается без скольжения по плоскости, описывая окружность радиуса с постоянной по величине угловой скоростью и сохраняя свою плоскость вертикальной. Найти осе стремительное ускорение и вращательное ускорение точки , положение которой на ободе диска определяется углом .
Задачи статики
При изучении аналитической статики прежде всего обращается внимание на общую формулировку принципа возможных перемещений (принцип Бернулли), без уяснения которой вообще невозможно решать задачи по аналитической статике. В основе ее лежит понятие работы силы на элементарном возможном перемещении. Поэтому прежде всего нужно выяснить, что называется возможным перемещением системы и как определяется работа силы на возможном перемещении. Причем, вначале должны быть рассмотрены системы с идеальными связями, для которых сумма работ всех сил реакций связей на любом возможном перемещении системы всегда равна нулю. После этого следует перейти к решению задач с неидеальными связями.
Основой всей аналитической статики является теорема Лагранжа о равновесии системы материальных точек. Формулировка этой теоремы имеет следующий вид: «Для равновесия системы материальных точек, на которую наложены идеальные связи, необходимо и достаточно, чтобы сумма работ всех активных сил, действующих на систему, была равна нулю для всех неосвобождающих возможных перемещений системы и была не больше нуля для освобождающих возможных перемещений системы».
Если связи, наложенные на систему материальных точек, являются неосвобождающими, то метод сводится к уравнениям равновесия, которые называются уравнениями Лагранжа. После того, как эти методы будут изучены, мы перейдем к рассмотрению метода неопределенных множителей Лагранжа.
Следует научиться определять реакции связей при помощи метола возможных перемещений.
Основные положения статики
Основные положения аналитической статики должны быть хорошо изучены по учебнику. Только тогда можно приступать к решению задач. Решение каждой конкретной задачи следует начинать с определения числа степеней свободы системы и выбора параметров, характеризующих положение этой системы, а также с установления зависимости произвольных параметров от независимых. Затем нужно определить все активные силы, действующие на точки системы, и точки приложения этих сил. Сообщив системе возможные перемещения, соответствующие изменениям независимых параметров, и приравняв нулю каждое из выражений работы, получим в результате столько уравнений равновесия, сколько имеется независимых параметров, определяющих положение механической системы. Эти уравнения дают возможность определить все независимые параметры, которые соответствуют положению равновесия системы.
Готовые задачи с решением:
- Задача №28. Полиспаст (механизм для поднятия тяжестей, состоящий из двух систем блоков, каждый из которых смонтирован в общей обойме и насажен на отдельные оси, как указано на рис. 1) оснащен нитью, один из концов которой прикреплен к неподвижной точке полиспаста, а другой свободен и находится под воздействием некоторой активной силы . Нить последовательно обходит как подвижные, так и неподвижные блоки. К нижнему блоку подвешен груз весом . Определить соотношение величин силы и веса при равновесии системы.
- Задача №29. Два однородных стержня и , имеющих соответственно длину и вес каждый, могут вращаться в одной вертикальной плоскости: первый — вокруг своей середины ; второй — вокруг шарнира , расположенного на одной вертикали с на расстоянии от точки (рис. 2). Определить положение равновесия системы.
- Задача №30. Однородный гладкий стержень длины и веса опирается концом на гладкую вертикальную стенку и одной из своих точек лежит на краю неподвижного стола (рис. 3). Определить угол , который образует стержень со столом в поло-женин равновесия, если расстояние от стенки до стола равно .
- Задача №31. В полый цилиндр радиуса , способный катиться без скольжения по горизонтальной плоскости, вложен другой цилиндр радиуса и веса (рис. 4). На малый цилиндр, кроме силы тяжести, действует еще пара сил, расположенная в плоскости чертежа, с моментом . На полый цилиндр намотана нить, которая на своем свободном конце несет груз веса . Полагая поверхности цилиндров достаточно шероховатыми (чтобы не было скольжения), найти положение равновесия системы и определить, при какой зависимости между данными силами это равновесие возможно.
- Задача №32. Палочка длины и веса опирается концом на наклонную плоскость , образующую угол с горизонталью, а в точке лежит на опоре (рис. 5). Определить угол , который палочка образует с горизонталью при равновесии. Размеры и расположение палочки и опоры указаны на чертеже.
- Задача №33. Два однородных цилиндра веса каждый положены на внутреннюю поверхность полого цилиндра, как указано на чертеже (рис. 6). Они поддерживают третий цилиндр веса . Определить зависимость между указанными на чертеже углами и , если — центр большого полого цилиндра, — центр третьего цилиндра и и — соответственно центры первого и второго цилиндров, на которых покоится третий.
- Задача №34. Бифилярный маятник представляет собой систему, состоящую из тяжелого однородного стержня веса , подвешенного на двух параллельных нитях и . Маятник переводится в новое положение и в этом положении удерживается в равновесии горизонтальной парой сил с моментом . Найти угол поворота стержня в положении равновесия системы, если (рис. 7).
Уравнения лагранжа равновесия системы
Уравнения Лагранжа являются уравнениями равновесия системы материальных точек, записанными и независимых координатах. Очень важно выяснить, когда и при каких условиях можно применять эти уравнения, какие преимущества дают эти уравнения при решении задач на равновесие системы. Особенно большое значение здесь имеет определение обобщенных сил.
Для определения положения системы материальных точек, на которую наложены связи, достаточно знать независимых параметров (здесь
— число точек системы, а
— число независимых уравнений связи), полностью определяющих положение системы материальных точек. Эти независимые параметры
носят название лагранжевых или обобщенных координат системы.
При этом декартовы координаты системы должны быть явно представимы через независимые координаты так, что
Всякое изменение декартовых координат должно полностью определяться изменением координат Лагранжа
Тогда условия равновесия системы сведутся к равенствам
которых будет столько, сколько имеется независимых координат, определяющих положение системы.
Готовые задачи с решением:
- Задача №35. Два одинаковых стержня и , имеющие каждый длину и вес , связаны между собой шарниром и опираются на неподвижный цилиндр радиуса с горизонтальной осью (рис. 28). Найти угол при равновесии системы и угол , который биссектриса этого угла составляет с вертикалью.
- Задача №36. Однородный стержень весом может вращаться на неподвижном шарнире в вертикальной плоскости. Конец этого стержня соединен шарнирно с другим однородным стержнем весом . К концу второго стержня приложена горизонтальная сила . Найти углы и стержней с горизонтальным направлением при равновесии системы (рис. 29).
- Задача №37. Рассмотрим задачу о равновесии системы, состоящей из шарнирного четырехзвенника , к шарниру которого приложена вертикальная сила , а звено жестко связано с диском, центр которого находится в точке . К диску в точке по касательной приложена горизонтальная сила . Размеры в положении равновесия системы указаны на чертеже. Пренебрегая весом стержней и диска, а также трением в шарнирах, определить соотношение между величинами и в положении равновесия, указанном на чертеже (рис. 30).
- Задача №38. Пусть имеется однородный стержень длины , опирающийся одним из своих концов на криволинейную направляющую, имеющую форму окружности радиуса (см. рис.31). Пусть этот стержень касается некоторой точки окружности, находящейся в конце горизонтального диаметра. Определить, пренебрегая трением, положение равновесия стержня и исследовать его на устойчивость.
Метод неопределенных множителей лагранжа
Метод неопределенных множителей Лагранжа занимает особенное положение в аналитической статике. Кроме того, что он имеет большое теоретическое значение при обосновании ряда основных положений теоретической механики, метод дает возможность решать сложные задачи механики, которые иным способом решаются с большим трудом. Приведенные здесь примеры на применение метода неопределенных множителей призваны подчеркнуть особенности этого метода, хотя иногда они и не представляют самостоятельного интереса.
Метод применяется чаще всего тогда, когда связи, наложенные на систему материальных точек, могут быть заданы аналитическими уравнениями. Тогда основное уравнение равновесия системы материальных точек приводится к виду
причем уравнения связи предполагаются заданными в виде
Приравнивая теперь нулю коэффициенты при , получим
уравнений, которые вместе с уравнениями связи определяют положение равновесия системы. Множители
при освобождающих связях в положении равновесия должны быть отрицательными.
Множители при неосвобождающих связях могут быть в положении равновесия как положительными, так и отрицательными.
Готовые задачи с решением:
- Задача №39. Исследовать условия равновесия материальной точки, находящейся под действием силы тяжести, на гладкой горизонтальной плоскости.
- Задача №40. Исследовать условия равновесия тяжелой материальной точки, на которую наложены связи (здесь предполагается, что ось направлена вертикально вверх, а ось — горизонтальна).
- Задача №41. Материальная точка с массой m находится в равновесии внутри трехосного эллипсоида с полуосями и . На точку действуют силы: сила тяжести, параллельная оси , и сила отталкивания от оси , пропорциональная расстоянию точки от этой оси. Найти положение равновесия точки.
Определение реакций связи. применение принципа возможных перемещений к системам с неидеальными связями. силы трения
Принцип возможных перемещений позволяет определять положения равновесия системы с идеальными связями. При помощи этого же принципа можно определять и реакции связей. Для этого
достаточно наложенные на систему связи заменить силами реакции, действие которых эквивалентно действию связен. В результате освобождения системы появляются новые возможные перемещения, которые раньше не допускались связями. На этих перемещениях будет отлична от нуля работа сил реакции связей. Подсчитывая работу всех действующих на систему сил, включая и силы реакции, на этом новом возможном перемещении системы, мы получим уравнение, из которого определяются реакции связей.
Аналогично поступают и при решении задач с неидеальными связями, вводя дополнительные условия на коэффициент трения.
Готовые задачи с решением:
- Задача №42. Два одинаковых стержня и , весом и длины а каждый, могут свободно вращаться на шарнирах и . Они соединены шарнирами и с третьим стержнем, расположенным горизонтально и имеющим вес Q и длину а<>- Вся система находится в равновесии в вертикальной плоскости. Определить реакции шарниров А и С, если угол а известен (рис. 45).
- Задача №43. Однородный стержень весом опирается верхним своим концом на негладкую вертикальную стенку (коэффициент трения равен ), а нижним — на гладкий горизонтальный стол и удерживается в равновесии в вертикальной плоскости при помощи привязанной к его нижнему концу и протянутой по столу веревки, которая затем перекинута через блок и несет на своем свободном конце груз весом . Найти, при каких значениях угла наклона стержня а возможно равновесие системы, а также определить реакции в точках и (рис. 46).
- Задача №43. На негладкой горизонтальной плоскости лежит полушар весом и с радиусом . В точке на него действует горизонтальная сила . Зная значение коэффициента трения между полушаром и опорной плоскостью, определить условия равновесия полушара, если расстояние (рис. 47).
Задачи динамики
В основу динамики точки положены законы Ньютона, устанавливающие зависимость ускорения материальной точки от сил, действующих на эту точку. А всякое движение материальной точки изучается только по отношению к некоторой системе координат и определяется силами, действующими в ней на данную точку.
Прежде всего необходимо научиться составлять уравнения движения материальной точки в различных системах отсчета и системах координат. Очень важно уметь построить минимальное количество дифференциальных уравнений движения материальной точки, из которых полностью определяется ее движение. Реакции связей могут быть определены после того, как будет определено движение точки.
При составлении дифференциальных уравнений движения точки необходимо использовать общие теоремы динамики и их первые интегралы. Общие теоремы в ряде случаев значительно упрощают исследование движения материальной точки и, кроме того, способствуют развитию интуиции.
Составлением дифференциальных уравнений движения не заканчивается, а только начинается исследование движения материальной точки. В конечном счете необходимо определить, как будет двигаться она при заданных начальных условиях, а в ряде задач еще потребуется знать, и как изменяется это движение при непрерывном изменении начальных условий. Нужно уметь определять траекторию точки и характер ее движения по этой траектории. Чтобы все это знать, необходимо уметь интегрировать уравнения движения материальной точки. Общие теоремы динамики и их первые интегралы представляют собой некоторые стандартные методы исследования ее движения. В целом ряде случаев эти стандартные методы значительно упрощают задачу интегрирования уравнений движения материальной точки.
Изучение движения точки относительно подвижной системы отсчета позволяет глубже раскрыть характер законов движения и действующих на точку сил, в зависимости от выбора той или иной системы отсчета.
Как обычно, мы начнем с рассмотрения наиболее простых задач, постепенно переходя к более сложным. Все задачи разобьем на следующие разделы:
- Прямолинейное движение материальной точки.
- Пространственное движение свободной материальной точки.
- Движение материальной точки по кривой и по поверхности.
- Движение материальной точки относительно подвижной системы отсчета.
Прямолинейное движение материальной точки
В случае прямолинейного движения положение материальной точки относительно некоторого неподвижного пространства определяется всего одной координатой, которой может быть расстояние материальной точки от некоторого фиксированного начала. Наиболее простым случаем здесь будет, по-видимому, вертикальное движение материальной точки в пустоте. Рассмотрим простейшею задачу такого движения.
Готовая задача с решением:
Пространственное движение материальной точки
При исследовании движения материальной точки в пространстве следует обратить внимание на определение сил, действующих на материальную точку. Без этого невозможно определить траекторию и характер движения точки. Особенно большое значение имеют задача о движении тяжелой материальной точки в пустоте и задача о движении материальной точки в центральном силовом поле. При исследовании движения большое значение приобретают общие теоремы динамики материальной точки. При решении задач необходимо использовать эти теоремы и их первые интегралы.
Готовые задачи с решением:
- Задача №45. Материальная точка массы притягивается неподвижным центром с силой , где — постоянный коэффициент пропорциональности, — расстояние точки от . В начальный момент расстояние , а скорость образует с направлением угол . Найти уравнения движения точки и ее траекторию, принимая прямую за ось .
- Задача №46. Материальная точка совершает плоское движение под действием некоторой силы , причем траектория точки оказывается эллипсом а ее ускорение все время остается параллельным оси . В начальный момент точка находится на оси , а ее скорость равна . Определить силу» действующую на точку, в функции координат точки.
- Задача №47. С крепостной башни производят два выстрела, причем начальные скорости снарядов оказываются равными по величине и лежат в одной и той же вертикальной плоскости. Эти начальные скорости направлены под углами и к горизонту. Оба снаряда попадают в одну и ту же точку на поверхности Земли. Найти высоту башни, предполагая, что поверхность Земли вокруг башни горизонтальна и что сопротивление воздуха отсутствует.
- Задача №48. Материальная точка описывает параболу под действием двух равных по величине сил, одна из которых направлена к фокусу параболы и обратно пропорциональна расстоянию точки от этого фокуса. Другая сила параллельна оси абсцисс и направлена в положительную сторону этой осн. Показать, что точка движется по параболе равномерно и определить величину скорости точки.
- Задача №49. Материальная точка массы описывает окружность радиуса , притягиваясь некоторой точкой этой окружности. Найти силу притяжения и скорость точки в зависимости от расстояния точки от .
Движение материальной точки по кривой и по поверхности
При исследовании движения материальной точки по кривой положение точки определяется всего одним параметром, а следовательно и для определения движения достаточно знать всего одно уравнение движения, в которое не входит лишних неизвестных. Такое уравнение может быть получено либо при помощи теоремы живых сил, либо из естественных уравнений движения. Другие уравнения дают возможность определять реакции связей.
При исследовании движения точки но поверхности мы имеем дело уже с двухпараметрической задачей и одного уравнении уже оказывается недостаточно для определения движения материальной точки. Тем не менее, желательно и в этих случаях научиться составлять уравнения движения так, чтобы в них не входили лишние неизвестные. Это удается далеко не всегда. Чаше всего к желаемому результату приводят теоремы живых сил и момента количества движения. В некоторых случаях полезно применять естественные уравнения движения точки. Упрощения получаются за счет симметрии поверхности, если такая может быть обнаружена.
Наибольшие затруднения представляет вопрос определения реакции связи.
Готовые задачи с решением:
- Задача №50. Тяжелое колечко массы надето на гладкую вертикально расположенную проволочную окружность радиуса . Колечко может свободно передвигаться по ней. В начальный момент оно находится в самой нижней точке окружности и ему сообщена начальная скорость . Найти условия, при которых колечко совершит полный оборот по окружности и определить давление на нее колечка, когда оно находится в самой верхней ее точке.
- Задача №51. По внешней стороне параболы с горизонтальной осью, уравнение которой , скатывается без трения и без начальной скорости шарик, начальная ордината которого . В какой точке шарик соскочит с параболы?
- Задача №52. Тяжелый шарик, масса которого равна , нанизан на горизонтальную проволочную окружность радиуса с коэффициентом трения . Определить, какую начальную скорость нужно сообщить шарику, чтобы он сделал по окружности один полный оборот.
- Задача №53. Тяжелая материальная точка движется по внутренней поверхности прямого кругового конуса, вершина которого обращена вниз, а ось симметрии вертикальна. Угол при вершине равен . В начальный момент расстояние точки от вершины конуса равно , начальная скорость равна и направлена перпендикулярно к образующей конуса. Определить траекторию точки и давление, которое она оказывает на поверхность конуса.
- Задача №54. Тяжелая материальная точка вынуждена оставаться на совершенно гладкой плоскости, которая равномерно вращается вокруг горизонтальной оси, расположенной в самой плоскости. В начальный момент точка находится на оси вращения, а ее скорость направлена вдоль оси вращения и равна . Определить закон движения точки.
- Задача №55. Материальная точка весом подвешена при помощи двух одинаковых нитей к двум опорам, находящимся на одном и том же горизонтальном уровне, причем угол наклона каждой нити к вертикали равен . Внезапно одну из нитей перерезают. Доказать, что натяжение другой нити мгновенно изменится в отношении .
- Задача №56. Материальная точка совершает колебания на гладкой параболе с вертикальной осью, изменяя направление своего движения на концах хорды, проходящей через фокус параболы перпендикулярно к оси параболы. Найти давление точки на параболу в самой нижней точке.
- Задача №57. По лемнискате, уравнение которой , скользит вниз от вершины весомая материальная точка , начиная движение без начальной скорости. Определить время движения до точки в зависимости от угла при отсутствии трения.
- Задача №58. Точка вынуждена оставаться на параболе и движется по этой параболе без воздействия внешних сил, находясь в начальный момент в положении и имея начальную скорость , направленную к вершине параболы. Через сколько времени точка достигнет вершины параболы?
Движение материальной точки относительно подвижной системы отсчета
До сих пор, определяя движение материальной точки, мы предполагали, что имеется некоторая неподвижная система отсчета. В этой системе задаются силы, действующие на материальную точку, и движение точки относительно системы отсчета определяется вторым законом Ньютона. Кроме того было установлено, что второй закон Ньютона определяет движение точки относительно любой инерциальной системы отсчета. При этом нигде не говорилось о том, как обнаружить такую инерциальную систему отсчета.
Переходя к изучению конкретных явлений, мы очень быстро убедимся, что движение всегда приходится определять относительно таких систем отсчета, которые сами совершают движение и не являются инерциальными системами. Так, изучая падение материальной точки вблизи поверхности Земли, мы обычно определяем движение относительно системы отсчета, связанной с Землей. Но такая система вместе с Землей в свою очередь совершает сложное движение в пространство. Ома вращается вокруг земной оси и вместе с Землей вращается вокруг Солнца.
И все же можно потребовать, чтобы движение относительно таких подвижных систем отсчета определялось бы теми же законами, которые действуют и в неподвижной системе. Эта инвариантность законов .движения .будет связана с определением силы. Так как в различных системах координат точка будет иметь различное ускорение, то и сила, определяющая это ускорение, должна быть в них различной. Как показывается в курсах теоретической механики, при переходе от одной системы отсчета к другой к действующим на материальную точку силам необходимо добавлять силы Кориолиса. Силы Корbолиса являются реальными силами, определяющими движение материальной точки относительно некоторой системы отсчета. Сама же система теперь может рассматриваться как неподвижная. При этом, очевидно, оказываются справедливыми все законы динамики материальной точки.
Силы Корнолиса можно разделить на две группы. К первой относится сила Корнолиса от переносного ускорения , где
— переносное ускорение точки, и сила Кориолиса от добавочного ускорения точки
или
где — угловая скорость вращения подвижной системы отсчета, a
— относительная скорость движения материальной точки.
При решении задач на относительное движение точки особенно внимательно нужно следить за определением сил, действующих на точку в данной системе координат.
Кстати готовые на продажу задачи тут, и там же теория из учебников может быть вам поможет она.
Готовые задачи с решением:
- Задача №59. Математический маятник подвешен внутри вагона, движущегося по прямолинейным рельсам с постоянным ускорением . Определить период колебаний маятника, предполагая, что нить, на которой подвешен маятник, нерастяжима и имеет длину (рис. 62).
- Задача №60. Прямолинейная трубка вращается в вертикальной плоскости вокруг горизонтальной оси с постоянной угловой скоростью . В трубке находится тяжелый шарик массы , прикрепленный к пружине, другой конец которой закреплен в точке . Найти закон движения шарика относительно трубки, считая упругую силу пружины пропорциональной ее удлинению с коэффициентом пропорциональности . В начальный момент трубка горизонтальна, а относительная скорость шарика равна нулю. Пружина в начальный момент имеет естественную длину . Рассмотреть случай.
- Задача №61. Окружность радиуса , плоскость которой вертикальна, вращается вокруг своего вертикального неподвижного диаметра с постоянной по величине угловой скоростью . По окружности может свободно скользить тяжелая материальная точка массы . Определить положение относительного равновесия материальной точки и найти период малых колебаний точки около положения устойчивого равновесия.
Возможно эти страницы вам будут полезны: