Начертательная геометрия задачи с решением

Оглавление:

Начертательная геометрия задачи с решением

Здравствуйте, на этой странице, я собрала весь курс лекций с примерами решения по всем разделам начертательной геометрии это самый полный курс лекций на сегодняшний день в интернете! Он подходит для студентов всех курсов и специальностей обучения. Курс лекций содержит, правила, теоремы, примеры решения.

Начертательная геометрия

Начертательная геометрия – это раздел геометрии, в котором пространственные фигуры изучаются с помощью их изображений на плоскости (чертежей). Разработка методов построения и чтения чертежей, решения геометрических и технических задач является предметом изучения начертательной геометрии. В начертательной геометрии используются графические методы решения задач, поэтому к чертежам предъявляются особые требования – обратимость, точность, наглядность и другие.

Правила построения изображений фигур основано на методе проецирования. Наиболее распространенными в начертательной геометрии являются чертежи, полученные при проецировании фигур на две плоскости – комплексные чертежи в системе двух плоскостей проекций. Под фигурой будем понимать любое множество точек.

Изображением точки, которая является элементом фигуры, является пара точек – две связанные между собой проекции точки. Каждой точке пространства соответствует единственная пара точек плоскости чертежа и каждой паре точек плоскости чертежа соответствует единственная точка пространства. Пара точек плоскости чертежа является геометрической моделью точки пространства.

Изображения фигур пространства, получаемые методами начертательной геометрии, являются геометрическими моделями этих фигур на плоскости. Между фигурой и ее изображением устанавливается строгая геометрическая связь, что позволяет судить о форме и размерах фигуры по ее изображению.

Задачи в начертательной геометрии обычно делятся на позиционные (задачи на определение общих элементов заданных фигур), метрические (задачи на определение значений геометрических величин – длин отрезков, размеров углов и т.д.) и конструктивные (задачи на построение фигур, удовлетворяющих заданным условиям). Знание элементарной геометрии, методов решения позиционных и метрических задач дает возможность решать и конструктивные задачи.

Метод проекций

Для того чтобы чертеж соответствовал изображаемому предмету и передавал его свойства, он должен быть построен по определенным геометрическим законам. Правила построения изображений в инженерной геометрии основаны на методе проекций.

Метод проекций предполагает наличие плоскости проекций, объекта проецирования и проецирующих лучей.

Проекцией точки Решение задач по начертательной геометрии на плоскость Решение задач по начертательной геометрии называется точка пересечения Решение задач по начертательной геометрии с этой плоскостью проецирующего луча Решение задач по начертательной геометрии, проходящего в пространстве через точку Решение задач по начертательной геометрии (рис. 1.1).

Различают два метода проецирования: центральное и параллельное.

Возможно эта страница вам будет полезна:

Предмет начертательная геометрия

Центральное и параллельное проецирование

При центральном проецировании все проецирующие лучи проходят через точку Решение задач по начертательной геометрии, называемую центром проекций и не лежащую в плоскости проекций. Для построения проекций некоторых точек Решение задач по начертательной геометрии (рис. 1.2) проводим через эти точки и центр проекций Решение задач по начертательной геометрии проецирующие лучи до пересечения с плоскостью Решение задач по начертательной геометрии. На плоскости проекций Решение задач по начертательной геометрии каждой точке будет соответствовать единственная точка — проекции Решение задач по начертательной геометрии.

Решение задач по начертательной геометрии

Центральное проецирование обладает наглядностью, оно используется при построении изображений архитектурно-строительных объектов, но даст значительное искажение размеров, вследствие чего не применяется для выполнения чертежей.

При параллельном проецировании проецирующие лучи параллельны заданному направлению Решение задач по начертательной геометрии (рис. 1.3). Точки пересечения проецирующих лучей, проходящих через точки Решение задач по начертательной геометрии с плоскостью проекций Решение задач по начертательной геометрии — параллельные проекции Решение задач по начертательной геометрии на плоскости Решение задач по начертательной геометрии.

Параллельное проецирование можно рассматривать как частный случай центрального при бесконечно удаленном центре проекций. В зависимости от направления проецирующих лучей относительно плоскости проекций параллельное проецирование может быть прямоугольным (проецирующие лучи перпендикулярны плоскости проекций) и косоугольным (проецирующие лучи составляют с плоскостью проекций угол, не равный Решение задач по начертательной геометрии).

Прямоугольной (ортогональной) проекцией точки Решение задач по начертательной геометрии (рис. 1.4) является основание перпендикуляра Решение задач по начертательной геометрии, проведенного из точки Решение задач по начертательной геометрии на плоскость Решение задач по начертательной геометрии. Динамический рисунок с перемещением точек Решение задач по начертательной геометрии и Решение задач по начертательной геометрии в пространстве относительно плоскости проекций можно посмотреть здесь.

Ортогональное проецирование имеет ряд преимуществ перед центральным и косоугольным параллельным проецированием.

Решение задач по начертательной геометрии

Для разработки чертежей применяется в основном прямоугольное (ортогональное) проецирование. Прямоугольное проецирование включает в себя все свойства центрального и параллельного проецирования.

  1. Каждая точка и прямая в пространстве имеют единственную проекцию на плоскости, так как через любую точку в пространстве можно провести только один проецирующий луч (рис. 1.4).
  2. Каждая точка на плоскости проекций может быть проекцией множества точек, если через них проходит общий проецирующий луч (рис. 1.5).
  3. Если точка принадлежит прямой, то проекция точки принадлежит проекции этой прямой (рис. 1.6).
Решение задач по начертательной геометрии
  1. Отношение отрезков прямой равно отношению их проекций (рис. 1.6):
Решение задач по начертательной геометрии
  1. Проекции параллельных прямых параллельны. Если Решение задач по начертательной геометрии, то Решение задач по начертательной геометрии (рис. 1.7). Если прямая перпендикулярна плоскости проекций, то проекцией этой прямой является точка (прямая Решение задач по начертательной геометрии, рис. 1.8).
Решение задач по начертательной геометрии
  1. Если отрезок прямой параллелен плоскости проекций, то на эту плоскость отрезок проецируется в натуральную величину (прямая Решение задач по начертательной геометрии, рис. 1.8).

Точка в системе двух и трех плоскостей проекций

Возьмем в пространстве две взаимно перпендикулярные плоскости. Одна из них располагается горизонтально — ее называют горизонтальной плоскостью проекций и обозначают буквой Решение задач по начертательной геометрии. Другая плоскость перпендикулярна горизонтальной и называется фронтальной плоскостью проекций. Эта плоскость обозначается буквой Решение задач по начертательной геометрии (рис. 1.9). Линия пересечения плоскостей проекций называется осью проекций. Ось проекций Решение задач по начертательной геометрии разделяет каждую из плоскостей на две полуплоскости.

Решение задач по начертательной геометрии

Спроецируем точку Решение задач по начертательной геометрии на плоскости проекций Решение задач по начертательной геометрии и Решение задач по начертательной геометрии. Горизонтальной проекцией точки называют прямоугольную проекцию точки на горизонтальной плоскости проекций. Горизонтальную проекцию находим как точку пересечения перпендикуляра, проведенного из точки Решение задач по начертательной геометрии, с плоскостью Решение задач по начертательной геометрии. Обозначим ее символом Решение задач по начертательной геометрии. Проведем из точки Решение задач по начертательной геометрии в плоскости Решение задач по начертательной геометрии перпендикуляр на ось Решение задач по начертательной геометрии и отметим вспомогательную точку Решение задач по начертательной геометрии.

Фронтальной проекцией точки называют прямоугольную проекцию точки на фронтальной плоскости проекций. Фронтальную проекцию находим как точку пересечения перпендикуляра, проведенного из точки Решение задач по начертательной геометрии, с плоскостью Решение задач по начертательной геометрии. Обозначим ее Решение задач по начертательной геометрии.

Для получения плоского чертежа точки необходимо совместить плоскость Решение задач по начертательной геометрии с плоскостью Решение задач по начертательной геометрии поворотом вокруг оси Решение задач по начертательной геометрии. При этом отрезки Решение задач по начертательной геометрии и Решение задач по начертательной геометрии образуют один отрезок Решение задач по начертательной геометрии, перпендикулярный к оси Решение задач по начертательной геометрии. Отрезок Решение задач по начертательной геометрии называется линией проекционной связи (рис. 1.10). Без обозначения плоскостей Решение задач по начертательной геометрии и Решение задач по начертательной геометрии этот чертеж будет выглядеть так, как показано на рис. 1.11. Полученный чертеж имеет название эпюр Монжа (Epure — чертеж (франц.)), в честь основоположника начертательной геометрии французского ученого Гаспара Монжа.

Решение задач по начертательной геометрии

Иногда двух проекций геометрического элемента бывает недостаточно, чтобы определить его форму и истинные размеры. Тогда выполняют построение изображения на третьей плоскости. Введем в систему Решение задач по начертательной геометрии, Решение задач по начертательной геометрии третью плоскость проекций, перпендикулярную плоскостям Решение задач по начертательной геометрии и Решение задач по начертательной геометрии. Ее называют профильной плоскостью проекций и обозначают Решение задач по начертательной геометрии (рис. 1.12).

Решение задач по начертательной геометрии

Три взаимно перпендикулярные плоскости проекций называются координатными плоскостями. Они пересекаются по трем взаимно перпендикулярным прямым Решение задач по начертательной геометрии которые называются осями координат и обозначаются Решение задач по начертательной геометрии. Общая точка Решение задач по начертательной геометрии — начало координат.

Рассмотрим построение трех проекций некоторой точки пространства. Зададимся произвольной точкой Решение задач по начертательной геометрии (рис. 1.12). Проецирование на плоскости Решение задач по начертательной геометрии и Решение задач по начертательной геометрии выполняется аналогично приведенному выше примеру проецирования точки Решение задач по начертательной геометрии на две плоскости проекций. Профильной проекцией точки является прямоугольная проекция точки на профильной плоскости проекций Решение задач по начертательной геометрии. Обозначим ее Решение задач по начертательной геометрии.

Часто с осями проекций совмещают декартову систему координат. Из рис. 1.12 видно, что:

Решение задач по начертательной геометрии (высота Решение задач по начертательной геометрии точки Решение задач по начертательной геометрии — аппликата);

Решение задач по начертательной геометрии (глубина Решение задач по начертательной геометрии точки Решение задач по начертательной геометрии — ордината);

Решение задач по начертательной геометрии (широта Решение задач по начертательной геометрии точки Решение задач по начертательной геометрии — абсцисса).

Чтобы перейти к плоскому изображению, повернем плоскость Решение задач по начертательной геометрии вниз вокруг оси Решение задач по начертательной геометрии и плоскость яз вправо вокруг оси Решение задач по начертательной геометрии до совмещения с плоскостью Решение задач по начертательной геометрии. При развороте плоскостей Решение задач по начертательной геометрии и Решение задач по начертательной геометрии ось Решение задач по начертательной геометрии воспроизводится дважды.

На рис. 1.13 показано расположение проекций Решение задач по начертательной геометрии точки Решение задач по начертательной геометрии после совмещения плоскостей проекций.

Решение задач по начертательной геометрии

Прямые, соединяющие на чертеже две проекции одной и той же точки, являются линиями проекционной связи, между Решение задач по начертательной геометрии и Решение задач по начертательной геометрии — вертикальная линия связи, между Решение задач по начертательной геометрии и Решение задач по начертательной геометрии — горизонтальная линия связи, между проекциями Решение задач по начертательной геометрии и Решение задач по начертательной геометрии — ломаная линия связи. Переход от оси Решение задач по начертательной геометрии плоскости Решение задач по начертательной геометрии к оси Решение задач по начертательной геометрии плоскости Решение задач по начертательной геометрии может осуществляться при помощи дуги или вспомогательной прямой, проведенной под углом Решение задач по начертательной геометрии к оси Решение задач по начертательной геометрии.

На рис. 1.14 выполнено построение профильной проекции Решение задач по начертательной геометрии точки Решение задач по начертательной геометрии по заданной горизонтальной Решение задач по начертательной геометрии и фронтальной Решение задач по начертательной геометрии. Построение выполняется следующим образом.

  1. Проводим через проекцию Решение задач по начертательной геометрии горизонтальную линию связи, на которой находится профильная проекция Решение задач по начертательной геометрии.
  2. Проводим ломаную линию связи через Решение задач по начертательной геометрии до пересечения с горизонтальной линией связи, проведенной через фронтальную проекцию Решение задач по начертательной геометрии.

Профильную проекцию Решение задач по начертательной геометрии можно получить, откладывая на горизонтальной линии связи от точки Решение задач по начертательной геометрии отрезок, равный координате Решение задач по начертательной геометрии.

Решение задач по начертательной геометрии

Как известно, положение точки в пространстве может быть задано при помощи трех ее координат (абсциссы Решение задач по начертательной геометрии, ординаты Решение задач по начертательной геометрии, аппликаты Решение задач по начертательной геометрии), т. е. трех чисел, выражающих расстояния от этой точки до трех плоскостей проекций. Запись координат точки производится в такой форме: Решение задач по начертательной геометрии. Например, задана точка Решение задач по начертательной геометрии. Эта запись означает, что точка Решение задач по начертательной геометрии определяется координатами Решение задач по начертательной геометрии.

Если масштаб для построения чертежа задан или выбран, то построение проводят так, как показано на рис. 1.13, 1.14 — откладывается на оси Решение задач по начертательной геометрии от точки Решение задач по начертательной геометрии отрезок Решение задач по начертательной геометрии, а на перпендикуляре к этой оси, проведенном из точки Решение задач по начертательной геометрии,откладывают отрезки Решение задач по начертательной геометрии и Решение задач по начертательной геометрии. Затем строят профильную проекцию Решение задач по начертательной геометрии, как описано выше.

Возможно эта страница вам будет полезна:

Начертательная геометрия для 1 курса

Проекции отрезка прямой линии

Как известно из элементарной геометрии, прямая линия определяется двумя точками, поэтому чтобы построить проекции этой прямой, необходимо иметь проекции двух точек, принадлежащих этой прямой.

Возьмем на произвольной прямой две точки Решение задач по начертательной геометрии и Решение задач по начертательной геометрии (рис. 1.15). Их проекции Решение задач по начертательной геометрии и Решение задач по начертательной геометрии на плоскости по определяют прямую, которую можно рассматривать как линию пересечения плоскости Решение задач по начертательной геометрии с плоскостью Решение задач по начертательной геометрии, определяемой прямой Решение задач по начертательной геометрии и проецирующими лучами Решение задач по начертательной геометрии и Решение задач по начертательной геометрии. Линия пересечения плоскостей Решение задач по начертательной геометрии и Решение задач по начертательной геометрии проходит через проекции Решение задач по начертательной геометрии и Решение задач по начертательной геометрии на плоскости Решение задач по начертательной геометрии. Эта линия и является проекцией прямой на плоскости проекций Решение задач по начертательной геометрии.

Одна проекция прямой не определяет ее положения в пространстве. Для однозначного определения прямой в пространстве необходимы как минимум две проекции.

Решение задач по начертательной геометрии

Прямые общего и частного положения

Прямые в пространстве могут занимать относительно плоскостей проекций различное положение. Прямую, не параллельную ни одной из плоскостей проекций, называют прямой общего положения. На рис. 1.16, а дано пространственное изображение, а на рис. 1.16,6-чертеж прямой Решение задач по начертательной геометрии.

Точки Решение задач по начертательной геометрии и Решение задач по начертательной геометрии находятся на разных расстояниях от каждой из плоскостей проекций, т. е. прямая Решение задач по начертательной геометрии не параллельна ни одной из них. Значит, прямая Решение задач по начертательной геометрии общего положения.

Решение задач по начертательной геометрии

На представленном примере показан перемещающийся в пространстве отрезок Решение задач по начертательной геометрии и его проекции на три плоскости.

По двум известным проекциям отрезка прямой всегда можно построить третью проекцию, так как любая пара проекций содержит все три координаты конечных точек отрезка.

Прямые, параллельные или перпендикулярные к плоскостям проекций, называются прямыми частного положения.

Прямая, параллельная плоскости проекций, называется прямой уровня. Существуют три линии уровня.

Решение задач по начертательной геометрии

Прямая, перпендикулярная к плоскостям проекций, называется проецирующей. Различают три вида проецирующих прямых.

Решение задач по начертательной геометрии

Определение натуральной величины отрезка прямой и углов наклона прямой к плоскостям проекций

Отрезки прямых общего положения не проецируются в натуральную величину ни на одну из плоскостей проекций. Длину (натуральную величину — Решение задач по начертательной геометрии) отрезка можно определить на основании свойства ортогонального проецирования.

Из рисунка 1.17 видно, что натуральная величина отрезка Решение задач по начертательной геометрии общего положения является гипотенузой прямоугольного треугольника Решение задач по начертательной геометрии. В этом треугольнике один катет Решение задач по начертательной геометрии параллелен плоскости Решение задач по начертательной геометрии и равен по длине горизонтальной проекции отрезка Решение задач по начертательной геометрии, а величина второго катета равна разности расстояний точек Решение задач по начертательной геометрии и Решение задач по начертательной геометрии до плоскости проекций Решение задач по начертательной геометрии, т. е. Решение задач по начертательной геометрии.

Угол Решение задач по начертательной геометрии — угол наклона отрезка Решение задач по начертательной геометрии к горизонтальной плоскости проекций Решение задач по начертательной геометрии.

Решение задач по начертательной геометрии

Таким образом, на горизонтальной проекции отрезка Решение задач по начертательной геометрии (рис. 1.18) можно построить прямоугольный треугольник, взяв вторым катетом Решение задач по начертательной геометрии. Гипотенуза этого треугольника Решение задач по начертательной геометрии будет натуральной величиной отрезка Решение задач по начертательной геометрии, а угол Решение задач по начертательной геометрии определяет угол наклона отрезка Решение задач по начертательной геометрии к горизонтальной плоскости проекций Решение задач по начертательной геометрии.

Аналогичное построение можно сделать на фронтальной плоскости проекций, взяв в качестве второго катета разность расстояний концов отрезка (Решение задач по начертательной геометрии) до фронтальной плоскости проекций Решение задач по начертательной геометрии. Отрезок Решение задач по начертательной геометрии -натуральная величина отрезка Решение задач по начертательной геометрии, угол Решение задач по начертательной геометрии — угол наклона Решение задач по начертательной геометрии к плоскости Решение задач по начертательной геометрии.

Относительное положение точки и прямой

Точка и прямая в пространстве могут занимать различное положение относительно друг друга. Если точка принадлежит прямой, то проекции этой точки лежат на одноименных проекциях данной прямой. Точка Решение задач по начертательной геометрии принадлежит прямой Решение задач по начертательной геометрии (рис. 1.19), так как се проекции Решение задач по начертательной геометрии и Решение задач по начертательной геометрии лежат на одноименных проекциях прямой Решение задач по начертательной геометрии и Решение задач по начертательной геометрии. Точки Решение задач по начертательной геометрии не принадлежат прямой Решение задач по начертательной геометрии, так как одна из проекций этих точек не лежит на соответствующей проекции прямой.

Решение задач по начертательной геометрии

Задание плоскости на чертеже

Плоскостью называется поверхность, образуемая перемещением прямой линии, которая движется параллельно самой себе по неподвижной направляющей прямой.

На чертеже плоскость можно изобразить только в том случае, если она проецируется в линию. На рис. 1.20 плоскость Решение задач по начертательной геометрии, расположенная перпендикулярно к плоскости Решение задач по начертательной геометрии, проецируется на нее прямой линией Решение задач по начертательной геометрии.

Если плоскость не перпендикулярна к плоскости проекций, то изобразить ее на чертеже невозможно, так как проекции плоскости занимают полностью всю плоскость проекций.

Однако ее можно задать на чертеже, изобразив отдельные геометрические элементы, определяющие ее.

Решение задач по начертательной геометрии
Решение задач по начертательной геометрии

Такими элементами являются:

  • три точки, не лежащие на одной прямой (рис. 1.21, а);
  • прямая и точка, не лежащая на ней (рис. 1.21, б);
  • пересекающиеся прямые (рис. 1.21, в);
  • две параллельные прямые (рис. 1.21, г);
  • плоская фигура (рис. 1.21, <)).

Плоскости общего и частного положения

Плоскость, не перпендикулярную ни к одной из плоскостей проекций, называют плоскостью общего положения (рис. 1.22). Эти плоскости имеют наибольшее распространение. Причем плоскость не ограничивается задающей ее плоской фигурой, а является бесконечной (если иное не оговорено в условии задачи).

Решение задач по начертательной геометрии

К плоскостям частного положения относятся плоскости, перпендикулярные или параллельные плоскостям проекций.

Если плоскости перпендикулярны к одной из плоскостей проекций, то они называются проецирующими.

Различают горизонтально-проецирующую, фронтально-проецирующую и профильно-проецирующую плоскости.

Плоскости, параллельные какой-либо плоскости проекций, называются плоскостями уровня.

К ним относятся:

  1. горизонтальная плоскость уровня — параллельная плоскости проекций Решение задач по начертательной геометрии;
  2. фронтальная плоскость уровня — параллельная плоскости Решение задач по начертательной геометрии;
  3. профильная плоскость уровня — параллельная плоскости Решение задач по начертательной геометрии.

Прямая и точка в плоскости

К числу основных задач, решаемых на плоскости, относятся: построение прямой, принадлежащей заданной плоскости; построение недостающих проекций точки, лежащей в плоскости. Решение указанных задач основано на известных положениях геометрии, перечисленных ниже.

  • Прямая принадлежит плоскости, если две ее точки принадлежат этой плоскости.

Например, плоскость задана параллельными прямыми Решение задач по начертательной геометрии и Решение задач по начертательной геометрии (горизонтальные проекции Решение задач по начертательной геометрии и фронтальные проекции Решение задач по начертательной геометрии на рис. 1.23). Требуется построить горизонтальную проекцию Решение задач по начертательной геометрии прямой Решение задач по начертательной геометрии, лежащей в этой плоскости, если известна ее фронтальная проекция Решение задач по начертательной геометрии.

Прямые Решение задач по начертательной геометрии лежат в одной плоскости, поэтому точки Решение задач по начертательной геометрии и Решение задач по начертательной геометрии являются точками пересечения соответственно прямых Решение задач по начертательной геометрии и Решение задач по начертательной геометрии и Решение задач по начертательной геометрии и Решение задач по начертательной геометрии. По линиям связи определяем горизонтальные проекции точек Решение задач по начертательной геометрии и Решение задач по начертательной геометрии. Через проекции точек Решение задач по начертательной геометрии и Решение задач по начертательной геометрии проводим горизонтальную проекцию прямой.

Решение задач по начертательной геометрии
  1. Прямая принадлежит плоскости, если она проходит через точку этой плоскости параллельно какой-либо прямой, лежащей в этой плоскости.

Например, плоскость задана треугольником Решение задач по начертательной геометрии (проекции Решение задач по начертательной геометрии и Решение задач по начертательной геометрии на рис. 1.24). Требуется построить прямую, лежащую в плоскости Решение задач по начертательной геометрии и проходящую через точку Решение задач по начертательной геометрии. Через точку Решение задач по начертательной геометрии проводим прямую Решение задач по начертательной геометрии, параллельную Решение задач по начертательной геометрии.

Следует отметить, что через точку Решение задач по начертательной геометрии в плоскости треугольника можно провести множество прямых.

Точка принадлежит плоскости, если она находится на прямой, лежащей в этой плоскости. Например, необходимо определить фронтальную проекцию точки Решение задач по начертательной геометрии, принадлежащей плоскости, заданной треугольником Решение задач по начертательной геометрии (рис. 1.25). Через точку Решение задач по начертательной геометрии проведем горизонтальную проекцию прямой Решение задач по начертательной геометрии и построим Решение задач по начертательной геометрии. Проекции точки принадлежат одноименным проекциям прямой Решение задач по начертательной геометрии. По линии связи находим фронтальную проекцию Решение задач по начертательной геометрии точки Решение задач по начертательной геометрии.

Прямые особого положения в плоскости

К числу прямых, занимающих особое положение в плоскости, относятся горизонтали, фронтали, профильные линии. Прямая, принадлежащая данной плоскости и параллельная горизонтальной плоскости проекций Решение задач по начертательной геометрии, называется горизонталью плоскости. Фронтальная проекция горизонтали параллельна оси Решение задач по начертательной геометрии. Построение проекций горизонтали треугольника Решение задач по начертательной геометрии, представленного проекциями Решение задач по начертательной геометрии и Решение задач по начертательной геометрии на рис. 1.26, начинается с проведения из вершины Решение задач по начертательной геометрии фронтальной проекции горизонтали Решение задач по начертательной геометрии, затем по линиям проекционной связи строится горизонтальная проекция Решение задач по начертательной геометрии.

Решение задач по начертательной геометрии

На рис. 1.27 построение фронтали (линии, параллельной фронтальной плоскости проекций) треугольника Решение задач по начертательной геометрии удобно начать с горизонтальной проекции Решение задач по начертательной геометрии, затем с помощью линий проекционной связи строится фронтальная проекция Решение задач по начертательной геометрии.

Задачи с решением №1

Задача №1.

По заданным координатам точки Решение задач по начертательной геометрииРешение задач по начертательной геометрии построить ее проекции.

Решение:

По оси Решение задач по начертательной геометрии откладываем Решение задач по начертательной геометрии (точка Решение задач по начертательной геометрии на рис. 1.28). В точке Решение задач по начертательной геометрии восстанавливаем перпендикуляр к оси (линия связи) и, отложив на нем Решение задач по начертательной геометрии и Решение задач по начертательной геометрии, получаем Решение задач по начертательной геометрии — горизонтальную и Решение задач по начертательной геометрии — фронтальную проекции точки Решение задач по начертательной геометрии.

Затем из точки Решение задач по начертательной геометрии проведем перпендикуляр к оси Решение задач по начертательной геометрии (точка Решение задач по начертательной геометрии). Радиусом Решение задач по начертательной геометрии переносим точку Решение задач по начертательной геометрии на ось Решение задач по начертательной геометрии на профильной проекции.

Из точки Решение задач по начертательной геометрии проводим горизонтальную линию связи. В пересечении линий связи получим точку Решение задач по начертательной геометрии — профильную проекцию точки Решение задач по начертательной геометрии.

Задача №2.

Через точку Решение задач по начертательной геометрии (проекции Решение задач по начертательной геометрии и Решение задач по начертательной геометрии на рис. 1.29) провести фронтальную прямую Решение задач по начертательной геометрии длиной Решение задач по начертательной геометрии под углом Решение задач по начертательной геометрии к плоскости Решение задач по начертательной геометрии и отложить на ней отрезок Решение задач по начертательной геометрии.

Решение:

Прямая Решение задач по начертательной геометрии параллельна фронтальной плоскости проекций яг и спроецирустся на эту плоскость в натуральную величину.

Из точки Решение задач по начертательной геометрии проводим прямую под углом Решение задач по начертательной геометрии к оси Решение задач по начертательной геометрии и откладываем на ней отрезок Решение задач по начертательной геометрии.

На фронтальной проекции Решение задач по начертательной геометрии откладываем отрезок Решение задач по начертательной геометрии. По линии связи определяем горизонтальную проекцию точки Решение задач по начертательной геометрии.

Вопросы для контроля

  1. Как называются и обозначаются плоскости проекций?
  2. Сформулируйте основные свойства прямоугольного проецирования.
  3. Какие координаты определяют положение фронтальной проекции точки?
  4. Какая прямая называется прямой общего положения?

Относительное положение двух прямых в пространстве

Прямые в пространстве могут занимать различное взаимное положение — они могут быть параллельными, пересекаться и скрещиваться. Из свойств параллельного проецирования следует, что если прямые параллельны (рис. 2.1), то их проекции также параллельны. На рис. 2.2 приведен чертеж параллельных прямых Решение задач по начертательной геометрии и Решение задач по начертательной геометрии. Проекции Решение задач по начертательной геометрииРешение задач по начертательной геометрии.

Решение задач по начертательной геометрии

Если прямые в пространстве пересекаются, то их проекции также пересекаются и точка пересечения лежит на одной общей линии связи. Пересекающиеся прямые Решение задач по начертательной геометрии и Решение задач по начертательной геометрии, приведенные на рис. 2.3, а, имеют общую точку Решение задач по начертательной геометрии.

Решение задач по начертательной геометрии

Поэтому горизонтальная (Решение задач по начертательной геометрии) и фронтальная (К») проекции этой точки лежат на пересечении одноименных проекций данных прямых. На рис. 2.3, б проекции точки Решение задач по начертательной геометрии и Решение задач по начертательной геометрии соединены линией связи (находятся на одном перпендикуляре к оси проекций).

Если две прямые не параллельны и не пересекаются, то они называются скрещивающимися. Как видно из рис. 2.4, а и б, горизонтальные проекции точек Решение задач по начертательной геометрии и Решение задач по начертательной геометрии прямых Решение задач по начертательной геометрии и Решение задач по начертательной геометрии, заданных проекциями Решение задач по начертательной геометрии и Решение задач по начертательной геометрии, и фронтальные проекции точек Решение задач по начертательной геометрии и Решение задач по начертательной геометрии сливаются в одну, так как расположены на одной проецирующей прямой. Но эти точки пересечения одноименных проекций (Решение задач по начертательной геометрии и Решение задач по начертательной геометрии) не являются общими для двух прямых, и, следовательно, прямые Решение задач по начертательной геометрии и Решение задач по начертательной геометрии скрещиваются.

Решение задач по начертательной геометрии

Пары точек Решение задач по начертательной геометрии и Решение задач по начертательной геометрии, лежащие на горизонтально-проецирующей прямой, или Решение задач по начертательной геометрии и Решение задач по начертательной геометрии, лежащие на фронтально-проецирующей прямой, называются конкурирующими.

Параллельность прямой и плоскости

Прямая, не лежащая в плоскости, может быть параллельна плоскости или пересекаться с ней. Решение вопроса о параллельности прямой и плоскости основывается на следующем свойстве: прямая параллельна плоскости, если она параллельна одной из прямых, лежащих в этой плоскости.

Задача и решение №2

Через точку Решение задач по начертательной геометрии требуется провести горизонтальную прямую, параллельную плоскости треугольника Решение задач по начертательной геометрии (рис. 2.5).

Построение следует начинать с проведения в плоскости треугольника Решение задач по начертательной геометрии произвольной прямой — горизонтали Решение задач по начертательной геометрии, например через вершину Решение задач по начертательной геометрии.

Затем через заданную точку Решение задач по начертательной геометрии проводим прямую Решение задач по начертательной геометрии, параллельную Решение задач по начертательной геометрии.

Если заданы плоскость и прямая, то для определения их параллельности нужно попытаться построить в плоскости прямую, параллельную заданной.

Решение задач по начертательной геометрии

Параллельность двух плоскостей

Две плоскости параллельны, если две пересекающиеся прямые, принадлежащие одной плоскости, параллельны двум пересекающимся прямым другой плоскости. Так, на рис. 2.6 плоскость треугольника Решение задач по начертательной геометрии параллельна плоскости двух пересекающихся прямых Решение задач по начертательной геометрии и Решение задач по начертательной геометрии, проходящих через точку Решение задач по начертательной геометрии, так как две стороны Решение задач по начертательной геометрии и Решение задач по начертательной геометрии соответственно параллельны прямым Решение задач по начертательной геометрии и Решение задач по начертательной геометрии.

Решение задач по начертательной геометрии

Задача:

Через точку Решение задач по начертательной геометрии требуется провести плоскость, параллельную плоскости параллельных прямых Решение задач по начертательной геометрии и Решение задач по начертательной геометрии (рис. 2.7, а).

Решение. Через точку Решение задач по начертательной геометрии проводим прямую Решение задач по начертательной геометрии, параллельную прямым Решение задач по начертательной геометрии и Решение задач по начертательной геометрии, задающим плоскость (рис. 2.7, б).

Решение задач по начертательной геометрии

Для того чтобы получить вторую прямую, проводим в заданной плоскости произвольную прямую 1-2. Затем проводим через точку Решение задач по начертательной геометрии прямую Решение задач по начертательной геометрии, параллельную прямой 1-2. Прямые Решение задач по начертательной геометрии и Решение задач по начертательной геометрии пересекаются и параллельны двум пересекающимся прямым заданной плоскости, следовательно, плоскости параллельны.

Пересечение двух плоскостей

Линией пересечения двух плоскостей является прямая, которая строится по двум точкам, общим для обеих плоскостей (рис. 2.8). Линия пересечения, по которой пересекаются между собой две плоскости, проходит через точки Решение задач по начертательной геометрии и Решение задач по начертательной геометрии, в которых прямые Решение задач по начертательной геометрии и Решение задач по начертательной геометрии плоскости треугольника пересекают вторую плоскость, т. е. точки Решение задач по начертательной геометрии и Решение задач по начертательной геометрии принадлежат обеим плоскостям.

Решение задач по начертательной геометрии

Для нахождения точек пересечения приходится выполнять целый ряд вспомогательных построений.

На рис. 2.9 приведен пример построения линии пересечения двух плоскостей: плоскости общего положения, заданной треугольником Решение задач по начертательной геометрии, и фронтально-проецирующей плоскости треугольника Решение задач по начертательной геометрии. В данном случае решение упрощается, так как одна из плоскостей занимает частное положение. Общими точками для этих двух плоскостей будут точки пересечения Решение задач по начертательной геометрии и Решение задач по начертательной геометрии сторон Решение задач по начертательной геометрии и Решение задач по начертательной геометрии треугольника Решение задач по начертательной геометрии с «вырожденной» проекцией треугольника Решение задач по начертательной геометрии. Фронтальная проекция Решение задач по начертательной геометрии линии пересечения совпадает с проекцией Решение задач по начертательной геометрии. Горизонтальные проекции Решение задач по начертательной геометрии и Решение задач по начертательной геометрии строятся при помощи линий связи.

При рассмотрении фронтальных проекций видно, что часть Решение задач по начертательной геометрии треугольника Решение задач по начертательной геометрии расположена над проекцией Решение задач по начертательной геометрии и на горизонтальной проекции будет видна («накрывает» плоскость треугольника Решение задач по начертательной геометрии). Часть Решение задач по начертательной геометрии располагается под Решение задач по начертательной геометрии и «накрывается» плоскостью треугольника Решение задач по начертательной геометрии.

Теперь рассмотрим общий случай построения линии пересечения двух плоскостей. Пусть в пространстве (рис. 2.10) заданы две плоскости общего положения Решение задач по начертательной геометрии и Решение задач по начертательной геометрии, плоскость Решение задач по начертательной геометрии — двумя пересекающимися прямыми Решение задач по начертательной геометрии и Решение задач по начертательной геометрии, плоскость Решение задач по начертательной геометрии — двумя параллельными прямыми Решение задач по начертательной геометрии и Решение задач по начертательной геометрии. Для построения линии их пересечения необходимо найти две точки, общие для обеих плоскостей.

Для определения этих точек заданные плоскости пересекают двумя вспомогательными плоскостями. В качестве таких плоскостей применяют плоскости частного положения. В данном случае использованы горизонтальные плоскости Решение задач по начертательной геометрии и Решение задач по начертательной геометрии. Плоскость Решение задач по начертательной геометрии пересекает плоскости Решение задач по начертательной геометрии и Решение задач по начертательной геометрии по горизонталям 1-2 и 3-4 соответственно. Эти горизонтали, пересекаясь, определяют точку Решение задач по начертательной геометрии, общую для плоскостей Решение задач по начертательной геометрии и Решение задач по начертательной геометрии. Вторая вспомогательная плоскость Решение задач по начертательной геометрии пересекает заданные плоскости по горизонталям 5-6 и 7-8, которые, пересекаясь, определяют вторую общую точку Решение задач по начертательной геометрии. Прямая Решение задач по начертательной геометрииРешение задач по начертательной геометрии — искомая линия пересечения плоскостей Решение задач по начертательной геометрии и Решение задач по начертательной геометрии. На рис. 2.11 описанный метод применен для решения этой задачи на проекционном чертеже.

Решение задач по начертательной геометрии
Решение задач по начертательной геометрии

Пересечение прямой линии с плоскостью частного положения

Так как плоскости частного положения проецируются на перпендикулярную к ней плоскость проекций в виде прямой линии, то на этой прямой должна находиться соответствующая проекция точки пересечения прямой с проецирующей плоскостью. Примеры определения точек пересечения прямой с плоскостью частного положения даны на рис. 2.12.

Решение задач по начертательной геометрии

На рис. 2.12, а прямая Решение задач по начертательной геометрии общего положения пересекается с фронтально-проецирующей плоскостью, заданной треугольником Решение задач по начертательной геометрии. Фронтальная проекция Решение задач по начертательной геометрии точки пересечения находится в точке пересечения фронтальной проекции Решение задач по начертательной геометрии прямой с проекцией Решение задач по начертательной геометрии. Горизонтальная проекция Решение задач по начертательной геометрии построена при помощи линий связи.

На рис. 2.12,6 прямая Решение задач по начертательной геометрии общего положения пересекается с горизонтальной плоскостью Решение задач по начертательной геометрии, заданной проекцией Решение задач по начертательной геометрии. В этом случае фронтальная проекция точки пересечения Решение задач по начертательной геометрии определена в пересечении фронтальной проекции прямой Решение задач по начертательной геометрии с проекцией плоскости Решение задач по начертательной геометрии. Горизонтальная проекция Решение задач по начертательной геометрии построена при помощи линии связи.

Во всех случаях плоскость считается «непрозрачной» — та часть прямой, которая закрывается плоскостью, показывается штриховой линией.

Пересечение прямой с плоскостью общего положения

Для определения точки пересечения прямой с плоскостью общего положения следует выполнить следующие построения:

  • провести через прямую вспомогательную плоскость;
  • построить линию пересечения вспомогательной плоскости с заданной;
  • найти точку пересечения заданной прямой и построенной;
  • определить видимые части проекций данной прямой.

На рис. 2.13 приведено построение точки пересечения прямой Решение задач по начертательной геометрии (проекции Решение задач по начертательной геометрии, Решение задач по начертательной геометрии) с плоскостью, заданной треугольником Решение задач по начертательной геометрии (проекции Решение задач по начертательной геометрии).

Через прямую Решение задач по начертательной геометрии проведена вспомогательная горизонтально-проецирующая плоскость Решение задач по начертательной геометрии. По горизонтальным проекциям Решение задач по начертательной геометрии и Решение задач по начертательной геометрии точек 1 и 2 находим фронтальные Решение задач по начертательной геометрии и Решение задач по начертательной геометрии, соединяя которые получаем фронтальную проекцию линии пересечения Решение задач по начертательной геометрии. Проекция Решение задач по начертательной геометрии пересекает фронтальную проекцию Решение задач по начертательной геометрии в точке Решение задач по начертательной геометрии, с помощью линии связи определяем горизонтальную проекцию Решение задач по начертательной геометрии точки Решение задач по начертательной геометрии. Видимость прямой и плоскости на горизонтальной плоскости проекций определяется с помощью горизонтально-конкурирующих точек 2 и 3. Точка 2 лежит на стороне Решение задач по начертательной геометрии а 3 — на прямой Решение задач по начертательной геометрии.

Их фронтальные проекции Решение задач по начертательной геометрии и Решение задач по начертательной геометрии показывают, что точка 2 находится ниже точки 3, поэтому на горизонтальной плоскости проекций горизонтальная проекция Решение задач по начертательной геометрии точки 2 будет закрыта проекцией Решение задач по начертательной геометрии точки 3. Отсюда следует, что проекция Решение задач по начертательной геометрии расположена ниже проекции Решение задач по начертательной геометрии и участок этой прямой с левой стороны до Решение задач по начертательной геометрии будет видимым. Относительную видимость на фронтальной плоскости проекций можно определить с помощью фронтально-конкурирующих точек 4 и 5.

На рис. 2.14 изображена горизонтально-проецирующая прямая Решение задач по начертательной геометрии, пересекающаяся с плоскостью общего положения, заданной треугольником Решение задач по начертательной геометрии.

Решение задач по начертательной геометрии

Положение горизонтальной проекции Решение задач по начертательной геометрии точки пересечения Решение задач по начертательной геометрии известно Решение задач по начертательной геометрии а положение фронтальной проекции определено при помощи прямой Решение задач по начертательной геометрии треугольника Решение задач по начертательной геометрии.

Перпендикулярность прямой и плоскости

Прямая перпендикулярна плоскости, если она перпендикулярна двум пересекающимся прямым этой плоскости.

На рис. 2.15 показано построение перпендикуляра из точки Решение задач по начертательной геометрии к плоскости треугольника Решение задач по начертательной геометрии. Направление проекций перпендикуляра определяется горизонталью Решение задач по начертательной геометрии (прямая Решение задач по начертательной геометрии) и фронталью Решение задач по начертательной геометрии (прямая Решение задач по начертательной геометрии) плоскости треугольника.

Горизонтальная проекция Решение задач по начертательной геометрии перпендикуляра проведена под прямым углом к проекции Решение задач по начертательной геометрии горизонтали, а фронтальная проекция Решение задач по начертательной геометрии расположена под прямым углом к фронтальной проекции Решение задач по начертательной геометрии фронтали.

Задача и решение №3

Пусть требуется построить плоскость, проходящую через точку Решение задач по начертательной геометрии и перпендикулярную данной прямой Решение задач по начертательной геометрии (рис. 2.16).

Искомую плоскость задаем двумя пересекающимися прямыми (горизонталью Решение задач по начертательной геометрии и фронталью Решение задач по начертательной геометрии), проходящими через точку Решение задач по начертательной геометрии.

Решение задач по начертательной геометрии

Горизонтальная проекция Решение задач по начертательной геометрии горизонтали Решение задач по начертательной геометрии перпендикулярна горизонтальной проекции Решение задач по начертательной геометрии прямой Решение задач по начертательной геометрии, фронтальная проекция фронтали Решение задач по начертательной геометрии перпендикулярна фронтальной проекции Решение задач по начертательной геометрии.

Если плоскости занимают частное положение, то перпендикуляры к этим плоскостям располагаются параллельно плоскостям проекций. Так, перпендикуляром к горизонтально-проецирующей плоскости Решение задач по начертательной геометрии (проекция Решение задач по начертательной геометрии) является горизонталь Решение задач по начертательной геометрии (рис. 2.17, а). Фронтальная прямая Решение задач по начертательной геометрии перпендикулярна фронтально-проецирующей плоскости Решение задач по начертательной геометрии (проекция Решение задач по начертательной геометрии рис. 2.17, б). Горизонтально-проецирующая прямая Решение задач по начертательной геометрии является перпендикуляром к горизонтальной плоскости Решение задач по начертательной геометрии (проекция Решение задач по начертательной геометрии рис. 2.17, в).

Решение задач по начертательной геометрии
Решение задач по начертательной геометрии

Взаимно перпендикулярные прямые общего положения образуют прямой угол, который проецируется на плоскости проекций с искажением. В общем случае перпендикуляр к прямой можно построить с помощью плоскости, расположенной перпендикулярно к этой прямой.

На рис. 2.18 показано построение перпендикуляра из точки Решение задач по начертательной геометрии к прямой Решение задач по начертательной геометрии. Сначала через точку Решение задач по начертательной геометрии проводим плоскость, перпендикулярную к прямой Решение задач по начертательной геометрии. Эта плоскость задается двумя пересекающимися прямыми: горизонталью Решение задач по начертательной геометрии и фронталью Решение задач по начертательной геометрии (при этом горизонтальная проекция Решение задач по начертательной геометрии перпендикулярна к горизонтальной проекции Решение задач по начертательной геометрии, а фронтальная проекция Решение задач по начертательной геометрии перпендикулярна к фронтальной проекции Решение задач по начертательной геометрии).

Затем определяем точку пересечения Решение задач по начертательной геометрии прямой Решение задач по начертательной геометрии с проведенной плоскостью. Для этого через прямую Решение задач по начертательной геометрии проводим фронтально-проецирующую плоскость Решение задач по начертательной геометрии, которая пересекает плоскость, заданную горизонталью Решение задач по начертательной геометрии и фронталью Решение задач по начертательной геометрии, по линии 1-2 (проекции Решение задач по начертательной геометрии.

Решение задач по начертательной геометрии
Решение задач по начертательной геометрии

В пересечении прямой 1-2 с прямой Решение задач по начертательной геометрии получается точка Решение задач по начертательной геометрии. Прямая Решение задач по начертательной геометрии является искомым перпендикуляром, так как пересекает прямую Решение задач по начертательной геометрии и находится в плоскости, перпендикулярной прямой Решение задач по начертательной геометрии.

При построении проекций перпендикуляра к прямым частного положения задача упрощается, так как одна из сторон прямого угла параллельна плоскости проекции и прямой угол на эту плоскость проекций проецируется без искажения.

Так на рис. 2.19, а показано построение проекций перпендикуляра, проведенного из точки Решение задач по начертательной геометрии к горизонтали Решение задач по начертательной геометрии. Горизонтальная проекция Решение задач по начертательной геометрии перпендикуляра Решение задач по начертательной геометрии располагается под прямым углом к горизонтальной проекции Решение задач по начертательной геометрии прямой Решение задач по начертательной геометрии. Фронтальная проекция Решение задач по начертательной геометрии определяется при помощи линий связи (точка Решение задач по начертательной геометрии принадлежит прямой Решение задач по начертательной геометрии). На рис. 2.19, б показано построение проекций перпендикуляра, проведенного из точки Решение задач по начертательной геометрии к фронтально-проецирующей прямой Решение задач по начертательной геометрии. Построение фронтальной проекции Решение задач по начертательной геометрии перпендикуляра очевидно из рисунка, а его горизонтальная проекция Решение задач по начертательной геометрии перпендикулярна к горизонтальной проекции Решение задач по начертательной геометрии прямой Решение задач по начертательной геометрии.

Возможно эта страница вам будет полезна:

Примеры решения задач по начертательной геометрии

Перпендикулярность двух плоскостей

Две плоскости взаимно перпендикулярны, если одна из них проходит через перпендикуляр к другой. На рис. 2.20 показано построение плоскости, перпендикулярной к плоскости, заданной треугольником Решение задач по начертательной геометрии. Дополнительным условием здесь служит то, что искомая плоскость должна проходить через прямую Решение задач по начертательной геометрии. Следовательно, искомая плоскость определяется прямой Решение задач по начертательной геометрии и перпендикуляром к плоскости треугольника. Для проведения этого перпендикуляра в плоскости Решение задач по начертательной геометрии взяты горизонталь Решение задач по начертательной геометрии и фронталь Решение задач по начертательной геометрии(Решение задач по начертательной геометрии). Через точку Решение задач по начертательной геометрии прямой Решение задач по начертательной геометрии проведены проекции перпендикуляра Решение задач по начертательной геометрии к плоскости Решение задач по начертательной геометрии.

Образованная пересекающимися прямыми Решение задач по начертательной геометрии и Решение задач по начертательной геометрии плоскость перпендикулярна к плоскости Решение задач по начертательной геометрии, так как проходит через перпендикуляр к этой плоскости.

Решение задач по начертательной геометрии

Задачи с решением

Задача №1.

Построить фронтальную проекцию отрезка прямой Решение задач по начертательной геометрии, принадлежащую плоскости, заданной двумя параллельными прямыми Решение задач по начертательной геометрии и Решение задач по начертательной геометрии (рис. 2.21).

Решение:

Обозначим горизонтальные проекции точек пересечения прямой Решение задач по начертательной геометрии с прямыми Решение задач по начертательной геометрии и Решение задач по начертательной геометрии соответственно Решение задач по начертательной геометрии и Решение задач по начертательной геометрии.

По линиям связи определяем их фронтальные проекции Решение задач по начертательной геометрии и Решение задач по начертательной геометрии и проводим искомую проекцию Решение задач по начертательной геометрии.

На примере здесь можно проследить ход решения подобной задачи.

Решение задач по начертательной геометрии

Задача №2.

В плоскости, заданной прямой Решение задач по начертательной геометрии и точкой Решение задач по начертательной геометрии, провести горизонталь на расстоянии 15 мм от горизонтальной плоскости проекций Решение задач по начертательной геометрии (рис. 2.22).

Решение:

Зададим исходную плоскость двумя пересекающимися прямыми. Для этого из точки Решение задач по начертательной геометрии проведем прямую Решение задач по начертательной геометрииРешение задач по начертательной геометрии, пересекающую прямую Решение задач по начертательной геометрии в точке Решение задач по начертательной геометрии. Затем на расстоянии 15 мм от оси Решение задач по начертательной геометрии проведем фронтальную проекцию горизонтали Решение задач по начертательной геометрии. По линиям связи определим горизонтальные проекции точек Решение задач по начертательной геометрии и Решение задач по начертательной геометрии и через них проведем горизонтальную проекцию Решение задач по начертательной геометрии горизонтали.

Решение задач по начертательной геометрии

Задача №3.

Построить линию пересечения двух плоскостей, заданных треугольниками Решение задач по начертательной геометрии и Решение задач по начертательной геометрии (условие на рис. 2.23).

Решение задач по начертательной геометрии

Решение:

Для построения линии пересечения двух плоскостей общего положения используем вспомогательные плоскости. На рис. 2.24, а приведено построение линии пересечения Решение задач по начертательной геометрии.

Точка Решение задач по начертательной геометрии найдена как точка пересечения прямой Решение задач по начертательной геометрии с плоскостью треугольника Решение задач по начертательной геометрии. Для ее построения через сторону Решение задач по начертательной геометрии проведена фронтально-проецирующая плоскость Решение задач по начертательной геометрии (на рисунке проекция Решение задач по начертательной геометрии совпадает с проекцией Решение задач по начертательной геометрии). Плоскость Решение задач по начертательной геометрии пересекает плоскость треугольника Решение задач по начертательной геометрии по прямой 1-2; точка Решение задач по начертательной геометрии получается как точка пересечения прямых Решение задач по начертательной геометрии и 1-2. Сначала находим горизонтальную проекцию точки Решение задач по начертательной геометрии, затем по линии связи строим фронтальную проекцию Решение задач по начертательной геометрии. Точка Решение задач по начертательной геометрии линии пересечения треугольников получена с помощью второй плоскости Решение задач по начертательной геометрии, которая проведена через прямую Решение задач по начертательной геометрии треугольника Решение задач по начертательной геометрии.

Фронтальная проекция Решение задач по начертательной геометрии совпадает с проекцией Решение задач по начертательной геометрии. Плоскость Решение задач по начертательной геометрии пересекает треугольник Решение задач по начертательной геометрии по линии 3-4. На пересечении прямых Решение задач по начертательной геометрии и 3-4 получается точка Решение задач по начертательной геометрии, принадлежащая линии пересечения двух треугольников. Сначала находится горизонтальная проекция точки Решение задач по начертательной геометрии, затем по линии связи определяется фронтальная проекция Решение задач по начертательной геометрии.

Для определения видимости сторон треугольников надо сравнить положение двух точек, из которых одна принадлежит стороне треугольника Решение задач по начертательной геометрии, вторая — стороне треугольника Решение задач по начертательной геометрии и у которых совпадают либо горизонтальные, либо фронтальные проекции (конкурирующие точки). В первом случае устанавливается, какая из этих точек «закрывает» другую по отношению к горизонтальной плоскости проекций, во втором — относительно фронтальной плоскости проекций.

На рис. 2.24, б в качестве примера приведены две горизонтально-конкурирующие точки — Решение задач по начертательной геометрии и Решение задач по начертательной геометрии. У этих точек совпадают горизонтальные проекции (Решение задач по начертательной геометрии). Но точка Решение задач по начертательной геометрии принадлежит стороне Решение задач по начертательной геометрии треугольника Решение задач по начертательной геометрии и расположена выше, чем точка Решение задач по начертательной геометрии, принадлежащая стороне Решение задач по начертательной геометрии треугольника Решение задач по начертательной геометрии. Следовательно, для наблюдателя, смотрящего на плоскость Решение задач по начертательной геометрии сверху, точка Решение задач по начертательной геометрии «закрывает» точку Решение задач по начертательной геометрии, а это значит, что данная часть треугольника Решение задач по начертательной геометрии, которой принадлежит точка Решение задач по начертательной геометрии, закрывает треугольник Решение задач по начертательной геометрии. Поэтому часть горизонтальной проекции Решение задач по начертательной геометриистороны, закрытой треугольником Решение задач по начертательной геометрии, показывается штриховой линией.

Для определения видимости фронтальных проекций треугольников рассмотрим относительное положение двух фронтально-конкурирующих точек Решение задач по начертательной геометрии и Решение задач по начертательной геометрии (рис. 2.24, б), у которых фронтальные проекции совпадают Решение задач по начертательной геометрии.

Решение задач по начертательной геометрии

Точка Решение задач по начертательной геометрии, расположенная на стороне Решение задач по начертательной геометрии треугольника Решение задач по начертательной геометрии, находится ближе к глазу наблюдателя, смотрящего на плоскость Решение задач по начертательной геометрии, чем точка Решение задач по начертательной геометрии, расположенная на стороне Решение задач по начертательной геометрии треугольника Решение задач по начертательной геометрии. Это значит, что часть треугольника Решение задач по начертательной геометрии, которой принадлежит точка Решение задач по начертательной геометрии, закрывает треугольник Решение задач по начертательной геометрии. Поэтому часть фронтальной проекции стороны Решение задач по начертательной геометрии, закрытой треугольником Решение задач по начертательной геометрии, показывается штриховой линией.

Вопросы для контроля

  1. Какая плоскость называется плоскостью общего положения?
  2. Какая плоскость называется проецирующей?
  3. Как проверить принадлежность точки плоскости?
  4. Какие линии в плоскости называются горизонталями, фронталями?
  5. Каковы признаки параллельности прямой и плоскости, двух плоскостей?
  6. Как построить точку пересечения прямой с плоскостью общего положения?

Способы преобразования проекций геометрических объектов

Решение задач значительно упрощается, если прямые линии и плоскости занимают частное положение относительно плоскостей проекций. В этом случае ответ получается или непосредственно по данному чертежу, или при помощи простейших построений.

Переход от общего положения геометрических элементов к частному выполняется следующими способами:

  • введением дополнительных плоскостей проекций, расположенных либо параллельно, либо перпендикулярно рассматриваемому геометрическому элементу;
  • изменением положения линии или плоской фигуры в пространстве при неизменной системе плоскостей проекций.

Основные задачи преобразования:

  1. прямая линия общего положения становится прямой уровня;
  2. прямая линия общего положения становится проецирующей прямой;
  3. плоскость общего положения становится проецирующей плоскостью;
  4. плоскость общего положения становится плоскостью уровня.

Способ замены плоскостей проекций

Сущность способа заключается в том, что положение заданных элементов (точек, линий, фигур, поверхностей) в пространстве остается неизменным, а система плоскостей проекций Решение задач по начертательной геометрии дополняется новыми плоскостями, по отношению к которым элементы задачи (прямая, плоскость) занимают частное положение.

На рис. 3.1 показана точка Решение задач по начертательной геометрии, заданная в системе плоскостей проекций Решение задач по начертательной геометрии. Заменим Решение задач по начертательной геометрии другой вертикальной плоскостью Решение задач по начертательной геометрии и построим новую фронтальную проекцию Решение задач по начертательной геометрии на эту плоскость. Так как плоскость проекций Решение задач по начертательной геометрии является общей для систем Решение задач по начертательной геометрии и Решение задач по начертательной геометрии, то координата Решение задач по начертательной геометрии точки Решение задач по начертательной геометрии остается неизменной. Следовательно, расстояние от новой фронтальной проекции до новой оси Решение задач по начертательной геометрии равно расстоянию от заменяемой проекции до оси Решение задач по начертательной геометрии. При этом проекция Решение задач по начертательной геометрии определена как основание перпендикуляра, опущенного из Решение задач по начертательной геометрии на Решение задач по начертательной геометрии. Горизонтальная проекция Решение задач по начертательной геометрии остается прежней, а координата Решение задач по начертательной геометрии в системе Решение задач по начертательной геометрии будет теперь иной и определяется расстоянием от точки Решение задач по начертательной геометрии до плоскости Решение задач по начертательной геометрии.

Для получения плоского чертежа плоскость Решение задач по начертательной геометрии вращением совмещается с Решение задач по начертательной геометрии. Также с Решение задач по начертательной геометрии совмещается новая фронтальная проекция Решение задач по начертательной геометрии, которая располагается на общем перпендикуляре с оставшейся без изменения горизонтальной проекцией Решение задач по начертательной геометрии (рис. 3.2).

Решение задач по начертательной геометрии

Аналогично можно заменить горизонтальную плоскость проекций на новую, перпендикулярную Решение задач по начертательной геометрии. В этом случае измеряется величина координаты Решение задач по начертательной геометрии, которая определяет расстояние от точки до общей для двух систем плоскости Решение задач по начертательной геометрии.

Преобразование прямой общего положения в положение прямой уровня

Для преобразования прямой Решение задач по начертательной геометрии в прямую уровня (т. е. параллельную плоскости проекций) (рис. 3.3) вводят новую плоскость проекций Решение задач по начертательной геометрии так, чтобы ось проекций Решение задач по начертательной геометрии была параллельна какой-либо проекции Решение задач по начертательной геометрии (в данном случае — Решение задач по начертательной геометрии). Затем проводятся линии связи перпендикулярно оси Решение задач по начертательной геометрии и откладываются координаты Решение задач по начертательной геометрии для построения проекций Решение задач по начертательной геометрии и Решение задач по начертательной геометрии, равные координатам Решение задач по начертательной геометрии проекций Решение задач по начертательной геометрии и Решение задач по начертательной геометрии. Новая проекция прямой Решение задач по начертательной геометрии даст натуральную величину отрезка Решение задач по начертательной геометрии и позволяет определить угол наклона Решение задач по начертательной геометрии этого отрезка к плоскости проекций Решение задач по начертательной геометрии. Угол наклона отрезка Решение задач по начертательной геометрии к фронтальной плоскости проекций Решение задач по начертательной геометрии можно определить, построив его изображение на дополнительной плоскости проекций Решение задач по начертательной геометрии (рис. 3.4). Ось Решение задач по начертательной геометрии параллельна фронтальной проекции отрезка Решение задач по начертательной геометрии. Проекция Решение задач по начертательной геометрии также будет представлять собой натуральную величину отрезка Решение задач по начертательной геометрии.

Решение задач по начертательной геометрии

На примере здесь можно проследить последовательность построений при решении задачи с использованием способа замены плоскостей.

Преобразование прямой общего положения в проецирующую

Преобразование прямой общего положения в проецирующее положение требует двойной замены плоскостей проекций, так как плоскость, перпендикулярная прямой, не будет перпендикулярна ни к Решение задач по начертательной геометрии, и к Решение задач по начертательной геометрии.

На рис. 3.5 выполнено преобразование прямой Решение задач по начертательной геометрии общего положения в проецирующее. В результате первой замены происходит преобразование прямой Решение задач по начертательной геометрии в прямую, параллельную плоскости па- Для этого проводится новая ось проекций Решение задач по начертательной геометрии‘ и находится проекция Решение задач по начертательной геометрии .

Затем выполняется вторая замена плоскостей проекций, переход к системе плоскостей Решение задач по начертательной геометрии. При этом ось проекций Решение задач по начертательной геометрии проводится перпендикулярно к Решение задач по начертательной геометрии. В результате прямая Решение задач по начертательной геометрии располагается перпендикулярно к плоскости проекций Решение задач по начертательной геометрии и проецируется в виде точки.

Решение задач по начертательной геометрии

Преобразование плоскости общего положения в проецирующее положение

Известно, что если одна плоскость перпендикулярна другой, то она должна содержать прямую, перпендикулярную этой плоскости. В качестве такой прямой для преобразований плоскости в проецирующее положение следует взять прямую уровня, например горизонталь Решение задач по начертательной геометрии (рис. 3.6).

Плоскость Решение задач по начертательной геометрии, перпендикулярная к горизонтали Решение задач по начертательной геометрии и плоскости Решение задач по начертательной геометрии, является плоскостью, перпендикулярной к плоскости треугольника Решение задач по начертательной геометрии. Новая ось проекций Решение задач по начертательной геометрии проводится перпендикулярно проекции горизонтали Решение задач по начертательной геометрии. Затем определяются проекции вершин треугольника на плоскость Решение задач по начертательной геометрии. Проекция Решение задач по начертательной геометрии вырождается в прямую, что свидетельствует о том, что плоскость треугольника перпендикулярна плоскости Решение задач по начертательной геометрии. При этом угол Решение задач по начертательной геометрии наклона плоскости треугольника Решение задач по начертательной геометрии к плоскости Решение задач по начертательной геометрии на плоскость Решение задач по начертательной геометрии проецируется без искажения.

Аналогичное преобразование выполнено на рис. 3.7, где плоскость Решение задач по начертательной геометрии заменена плоскостью Решение задач по начертательной геометрии, перпендикулярной Решение задач по начертательной геометрии и плоскости треугольника Решение задач по начертательной геометрии. Для этого в плоскости Решение задач по начертательной геометрии проведена фронталь Решение задач по начертательной геометрии, перпендикулярно к которой располагается плоскость Решение задач по начертательной геометрии. Новая ось Решение задач по начертательной геометрии проведена перпендикулярно Решение задач по начертательной геометрии.

Решение задач по начертательной геометрии

На линиях связи, проведенных из вершин треугольника Решение задач по начертательной геометрии перпендикулярно оси Решение задач по начертательной геометрии откладывают отрезки, равные Решение задач по начертательной геометрии Плоскость треугольника относительно Решение задач по начертательной геометрии стала проецирующей. Угол Решение задач по начертательной геометрии наклона плоскости треугольника Решение задач по начертательной геометрии к плоскости Решение задач по начертательной геометрии на плоскости Решение задач по начертательной геометрии проецируется без искажения.

Преобразование плоскости общего положения в плоскость уровня

Преобразование плоскости общего положения в плоскость уровня требует двойной замены плоскостей проекций, так как плоскость, параллельная заданной плоскости, не будет перпендикулярна ни Решение задач по начертательной геометрии ни Решение задач по начертательной геометрии, т. е. она не образует с плоскостью проекций ортогональной системы. На рис. 3.8 показано преобразование плоскости треугольника Решение задач по начертательной геометрии общего положения в положение уровня.

При первой замене (Решение задач по начертательной геометрии па Решение задач по начертательной геометрии) используется горизонталь треугольника Решение задач по начертательной геометрии. Новая ось проекций Решение задач по начертательной геометрии проводится перпендикулярно горизонтальной проекции горизонтали Решение задач по начертательной геометрии. Спроецировав треугольник Решение задач по начертательной геометрии на новую плоскость проекций Решение задач по начертательной геометрии, получим проекцию Решение задач по начертательной геометрии. Эти построения описаны выше.

На втором этапе преобразуем плоскость треугольника Решение задач по начертательной геометрии в плоскость уровня. Для этого перейдем от системы Решение задач по начертательной геометрии к системе Решение задач по начертательной геометрии. Новая плоскость Решение задач по начертательной геометрии устанавливается параллельно треугольнику, а значит, новая ось Решение задач по начертательной геометрии на чертеже проводится параллельно прямой, на которой расположены точки Решение задач по начертательной геометрии.

Решение задач по начертательной геометрии

Через указанные точки проводят перпендикуляры — линии связи к новой оси Решение задач по начертательной геометрии и откладывают на них в плоскости Решение задач по начертательной геометрии отрезки, равные по длине расстояниям от оси Решение задач по начертательной геометрии до вершин Решение задач по начертательной геометрии и Решение задач по начертательной геометрии соответственно. Полученная проекция Решение задач по начертательной геометрии определяет истинную величину треугольника.

Подобные двойные преобразования используются для решения задач на определение углов при вершинах треугольника, построение высот и биссектрис его углов, центра вписанной (описанной) окружности и т. п., так как эти задачи требуют определения натуральных величин треугольников.

При вращении вокруг неподвижной прямой (оси вращения) каждая точка геометрического элемента перемещается в плоскости, перпендикулярной к оси вращения (плоскости вращения). Точка перемещается по окружности, центр которой находится в точке пересечения оси с плоскостью вращения, а радиус вращения равен расстоянию от вращаемой точки до центра. Если точка находится на оси вращения, то она остается неподвижной.

Вращение точки вокруг проецирующих прямых. На рис. 3.9 точка Решение задач по начертательной геометрии, вращаясь вокруг оси Решение задач по начертательной геометрии, описывает окружность, плоскость а которой перпендикулярна Решение задач по начертательной геометрии. Центр окружности Решение задач по начертательной геометрии (центр вращения) расположен в точке пересечения оси вращения Решение задач по начертательной геометрии с плоскостью Решение задач по начертательной геометрии, а радиус вращения Решение задач по начертательной геометрии равен длине отрезка Решение задач по начертательной геометрии.

Так как плоскость вращения Решение задач по начертательной геометрии параллельна плоскости Решение задач по начертательной геометрии, то проекция траектории вращающейся точки на плоскость представляет собой окружность радиуса Решение задач по начертательной геометрии, а на плоскость Решение задач по начертательной геометрии — отрезок прямой, параллельной оси Решение задач по начертательной геометрии. Через Решение задач по начертательной геометрии обозначено новое положение точки Решение задач по начертательной геометрии, которое она занимает после поворота на угол Решение задач по начертательной геометрии.

На рис. 3.10 приведен ортогональный чертеж точки Решение задач по начертательной геометрии, вращающейся вокруг горизонтально-проецирующей оси Решение задач по начертательной геометрии. После поворота на угол Решение задач по начертательной геометрии точка Решение задач по начертательной геометрии займет новое положение Решение задач по начертательной геометрии (Решение задач по начертательной геометрии — плоскость вращения, Решение задач по начертательной геометрии — центр вращения, Решение задач по начертательной геометрии — радиус вращения).

Если ось вращения Решение задач по начертательной геометрии расположена перпендикулярно плоскости Решение задач по начертательной геометрии (рис. 3.11), то фронтальная проекция точки Решение задач по начертательной геометрии будет перемещаться по окружности, а горизонтальная — по прямой, перпендикулярной линиям связи. Новое положение точки, которое она занимает после поворота на угол Решение задач по начертательной геометрии — точка Решение задач по начертательной геометрии. Плоскость вращения — фронтальная плоскость Решение задач по начертательной геометрии.

Решение задач по начертательной геометрии

Для поворота отрезка прямой на заданный угол необходимо повернуть на этот угол две точки, определяющие отрезок. Каждая из этих точек вращается в плоскости, перпендикулярной оси вращения, и будет иметь свой радиус вращения.

Плоскопараллельное перемещение отрезка

При плоскопараллельном перемещении все точки геометрической фигуры движутся в плоскостях, параллельных плоскости проекций, т. е. сохраняется основной принцип вращения вокруг проецирующих осей. На рис. 3.12 приведено наглядное изображение плоскопараллельного перемещения отрезка Решение задач по начертательной геометрии.

Решение задач по начертательной геометрии

На рис. 3.12, а дано исходное положение отрезка Решение задач по начертательной геометрии — прямой, занимающей относительно плоскостей проекций общее положение. На рис. 3.12, б отрезок Решение задач по начертательной геометрии перемещен в новое положение, при этом точка Решение задач по начертательной геометрии движется в плоскости Решение задач по начертательной геометрии, точка Решение задач по начертательной геометрии — в плоскости Решение задач по начертательной геометрии. Обе плоскости параллельны горизонтальной плоскости проекций.

При таком перемещении угол наклона Решение задач по начертательной геометрии отрезка к плоскости Решение задач по начертательной геометрии сохраняется неизменным, поэтому не изменяется и длина горизонтальной проекции отрезка, т. е. Решение задач по начертательной геометрии. Последнее свойство имеет важное значение для решения задач.

На рис. 3.13 приведен пример плоскопараллельного перемещения отрезка Решение задач по начертательной геометрии в новое положение, параллельное фронтальной плоскости проекций. На этом чертеже отрезок Решение задач по начертательной геометрии перемещается в новое положение параллельно фронтальной плоскости проекций. При этом сначала перемещается в новое положение, параллельное оси Решение задач по начертательной геометрии, горизонтальная проекция отрезка, причем Решение задач по начертательной геометрии. Затем по линиям связи строится фронтальная проекция Решение задач по начертательной геометрии.

Решение задач по начертательной геометрии

После перемещения отрезка Решение задач по начертательной геометрии в новое положение Решение задач по начертательной геометрии он станет параллельным плоскости Решение задач по начертательной геометрии и его новая фронтальная проекция будет равна натуральной величине. Соответственно, угол Решение задач по начертательной геометрии наклона проекции Решение задач по начертательной геометрии к оси проекций будет равен углу наклона отрезка Решение задач по начертательной геометрии к плоскости Решение задач по начертательной геометрии.

На рис. 3.14 приведено двойное плоскопараллельное перемещение отрезка Решение задач по начертательной геометрии с целью преобразования его в фронтально-проецирующее положение. Вначале произведено перемещение фронтальной проекции в положение, параллельное оси Решение задач по начертательной геометрии, причем Решение задач по начертательной геометрии. Отрезок Решение задач по начертательной геометрии занял положение, параллельное плоскости Решение задач по начертательной геометрии, и его горизонтальная проекция Решение задач по начертательной геометрии равна длине отрезка. Затем горизонтальная проекция перемещается в положение, перпендикулярное оси Решение задач по начертательной геометрии, причем Решение задач по начертательной геометрии.

Отрезок Решение задач по начертательной геометрии занял фронтально-проецирующее положение и его фронтальная проекция Решение задач по начертательной геометрии.

На рис. 3.15 показано перемещение треугольника Решение задач по начертательной геометрии, расположенного в плоскости общего положения, в положение плоскости уровня. При первом движении треугольник Решение задач по начертательной геометрии переводится во фронтально-проецирующее положение. Для этого в плоскости треугольника строится горизонтальная прямая Решение задач по начертательной геометрии, затем горизонтальная проекция Решение задач по начертательной геометрии перемещается в проецирующее положение (на свободном поле чертежа проводится отрезок Решение задач по начертательной геометрии перпендикулярно оси Решение задач по начертательной геометрии).

Решение задач по начертательной геометрии

В процессе перемещения размеры и форма горизонтальной проекции треугольника не изменяются. Построение вершин Решение задач по начертательной геометрии и Решение задач по начертательной геометрии выполняется засечками с помощью циркуля. Все вершины треугольника на фронтальной плоскости проекций перемещаются по горизонтальным линиям связи, пересечение которых с линиями связи, проведенными из соответствующих вершин новой горизонтальной проекции треугольника Решение задач по начертательной геометрии, образует новую фронтальную проекцию Решение задач по начертательной геометрии, перпендикулярную фронтальной плоскости проекций.

При втором движении все точки треугольника перемещаются в плоскостях, параллельных фронтальной плоскости проекций, в результате чего он займет положение горизонтальной плоскости уровня и его вырожденная фронтальная проекция Решение задач по начертательной геометрии расположится перпендикулярно линиям связи, оставаясь неизменной по длине. Новая горизонтальная проекция Решение задач по начертательной геометрии треугольника Решение задач по начертательной геометрии будет равна его натуральной величине.

Задачи с решением №4

Задача №1.

Определить расстояние между скрещивающимися прямыми Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением (рис. 3.16).

Решение:

Расстояние между скрещивающимися прямыми измеряется длиной перпендикуляра, общего к заданным прямым. Для решения задачи используем способ замены плоскостей проекций

Начертательная геометрия задачи с решением

Если в результате преобразования одна из прямых займет положение проецирующей относительно какой-либо плоскости проекций, т. е. будет представлять собой точку, то перпендикуляр, опущенный из этой точки на другую прямую, будет параллелен этой плоскости проекций и спроецируется на нее в натуральную величину. Прямая Начертательная геометрия задачи с решением преобразуется в проецирующую двойной заменой плоскостей проекций.

Сначала построим проекции Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением на плоскости Начертательная геометрия задачи с решением, расположенной параллельно прямой Начертательная геометрия задачи с решением (проводим Начертательная геометрия задачи с решением).

Затем найдем проекции прямых Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением на плоскость Начертательная геометрия задачи с решением, перпендикулярную прямой Начертательная геометрия задачи с решением. На плоскость Начертательная геометрия задачи с решением прямая Начертательная геометрия задачи с решением спроецируется в точку (Начертательная геометрия задачи с решением ), а расстояние между нею и проекцией Начертательная геометрия задачи с решением (отрезок Начертательная геометрия задачи с решением) будет искомой натуральной величинои расстояния между заданными прямыми.

Далее путем обратного проецирования строим проекцию отрезка Начертательная геометрия задачи с решением на плоскость Начертательная геометрия задачи с решением, при этом точку Начертательная геометрия задачи с решением находим, проведя перпендикуляр из точки Начертательная геометрия задачи с решением к проекции Начертательная геометрия задачи с решением. Прямой угол здесь на искажается, так как проекция Начертательная геометрия задачи с решением параллельна плоскости Начертательная геометрия задачи с решением. С помощью линий связи находим проекции отрезка Начертательная геометрия задачи с решением сначала на плоскости Начертательная геометрия задачи с решением а затем на плоскости Начертательная геометрия задачи с решением.

Задача №2.

Повернуть точку Начертательная геометрия задачи с решением вокруг оси Начертательная геометрия задачи с решением до совмещения ее с плоскостью Начертательная геометрия задачи с решением общего положения, заданной пересекающимися прямыми ВС и CD (рис. 3.17).

Начертательная геометрия задачи с решением

Решение:

Точка Начертательная геометрия задачи с решением вращается вокруг оси Начертательная геометрия задачи с решением, перпендикулярной к плоскости проекций Начертательная геометрия задачи с решением. Через точку Начертательная геометрия задачи с решением проведена плоскость Начертательная геометрия задачи с решением, перпендикулярная к оси вращения и, следовательно, параллельная Начертательная геометрия задачи с решением. Горизонтальная плоскость Начертательная геометрия задачи с решением пересекает заданную (Начертательная геометрия задачи с решением) по горизонтали Начертательная геометрия задачи с решением. При вращении точка Начертательная геометрия задачи с решением описывает окружность радиуса Начертательная геометрия задачи с решением, величина которого определяется длиной перпендикуляра, проведенного из точки Начертательная геометрия задачи с решением на ось.

Окружность проецируется на плоскость Начертательная геометрия задачи с решением без искажения и пересекается с проекцией горизонтали Начертательная геометрия задачи с решением в точках Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением, которые являются горизонтальными проекциями точки Начертательная геометрия задачи с решением, т. е. задача имеет два решения.

По линиям связи находим фронтальные проекции точек Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением, лежащих на горизонтали Начертательная геометрия задачи с решением.

Вопросы для контроля

  1. Сформулируйте основные задачи преобразования чертежа.
  2. Перечислите способы преобразования чертежа.
  3. В чем заключается способ замены плоскостей проекций?
  4. Как перемещаются проекции точки при вращении ее вокруг проецирующих осей?
  5. В чем заключается способ плоскопараллельного перемещения?

Многогранники

Одним из видов пространственных форм являются многогранники — замкнутые пространственные фигуры, ограниченные плоскими многоугольниками. Эти многоугольники образуют грани. Общие стороны многоугольников называются ребрами’, вершины многогранных углов, образованных его гранями, сходящихся в одной точке, — вершинами многогранника. Наибольший практический интерес представляют собой призмы, пирамиды и правильные многогранники.

Призма — многогранник, две грани которого представляют равные многоугольники с взаимно параллельными сторонами (основаниями) (рис. 4.1). Ребра, не принадлежащие основаниям и параллельные друг другу, называют боковыми. Призму, ребра которой перпендикулярны к основаниям, называют прямой. Прямая призма называется правильной, если ее основаниями являются правильные многоугольники.

Начертательная геометрия задачи с решением

Пирамида — многогранник, одна грань которого — плоский Начертательная геометрия задачи с решением-угольник (основание), а остальные грани — треугольники с общей вершиной (рис. 4.2). Если основанием пирамиды является правильный многоугольник и высота ее проходит через центр этого многоугольника, пирамиду называют правильной.

Многогранник называют правильным, если его грани представляют собой правильные и равные многоугольники.

Точка и прямая линия на поверхности многогранника

Точки на гранях призмы и пирамиды строятся при помощи вспомогательных прямых, принадлежащих соответствующим плоскостям граней. Чтобы определить по заданной фронтальной проекции Начертательная геометрия задачи с решением точки 1, лежащей на грани призмы Начертательная геометрия задачи с решением, горизонтальную проекцию Начертательная геометрия задачи с решением (рис. 4.3), нужно провести через точку Начертательная геометрия задачи с решением фронтальную проекцию вспомогательной прямой Начертательная геометрия задачи с решением, параллельную ребрам призмы.

Фронтальная проекция Начертательная геометрия задачи с решением точки 2, лежащей на грани Начертательная геометрия задачи с решением, построена с помощью вспомогательной прямой Начертательная геометрия задачи с решением, проведенной через проекцию Начертательная геометрия задачи с решением. Недостающую проекцию точки 3, расположенную на ребре Начертательная геометрия задачи с решением определим с помощью линии связи.

На рис. 4.4 показано построение недостающих проекций точек, находящихся на боковой поверхности пирамиды Начертательная геометрия задачи с решением. Фронтальная проекция Начертательная геометрия задачи с решением точки 1, расположенная на грани Начертательная геометрия задачи с решением, представляющей собой профильно-проецирующую плоскость, построена с помощью линий связи.

Начертательная геометрия задачи с решением

Чтобы определить по заданной проекции Начертательная геометрия задачи с решением точки 2, лежащей на грани Начертательная геометрия задачи с решением, проекцию Начертательная геометрия задачи с решением (рис. 4.4), используем горизонталь Начертательная геометрия задачи с решением.

Фронтальная проекция горизонтали Начертательная геометрия задачи с решением проведена через проекцию Начертательная геометрия задачи с решением до пересечения с проекцией Начертательная геометрия задачи с решением ребра Начертательная геометрия задачи с решением в точке Начертательная геометрия задачи с решением.

Горизонтальная проекция Начертательная геометрия задачи с решением горизонтали Начертательная геометрия задачи с решением проходит через точку Начертательная геометрия задачи с решением параллельно проекции Начертательная геометрия задачи с решением стороны Начертательная геометрия задачи с решением.

Чтобы определить по заданной проекции точки Начертательная геометрия задачи с решением, расположенной на грани Начертательная геометрия задачи с решением, проекцию Начертательная геометрия задачи с решением, используем прямую Начертательная геометрия задачи с решением. Фронтальная проекция Начертательная геометрия задачи с решением точки 4, расположенной на ребре Начертательная геометрия задачи с решением, построена с помощью линий связи.

Пересечение многогранников плоскостью

При пересечении многогранника плоскостью в сечении получается многоугольник.

Определение вершин многоугольника сводится к построению точек пересечения прямых (ребер многогранника) с плоскостью — способ ребер. При определении сторон многоугольника решаются задачи на пересечение двух плоскостей — способ граней.

На рис. 4.5 показано построение проекций линии пересечения прямой четырехугольной призмы фронтально-проецирующей плоскостью Начертательная геометрия задачи с решением (проекция Начертательная геометрия задачи с решением).

Пересечение проекции а» с фронтальными проекциями боковых ребер призмы дает проекции Начертательная геометрия задачи с решением вершин многоугольника сечения. Горизонтальные проекции этих вершин совпадают с «вырожденными» проекциями соответствующих ребер, так как призма прямая. Профильные проекции Начертательная геометрия задачи с решением вершин определим при помощи горизонтальных линий связи на соответствующих проекциях ребер призмы.

Начертательная геометрия задачи с решением

Натуральная величина многоугольника еечения найдена способом плоскопараллсльного перемещения. Переместим фронтальную проекцию сечения в горизонтальное положение.

Проекция Начертательная геометрия задачи с решением — натуральная величина многоугольника сечения.

Развертка поверхности призмы

Разверткой называется фигура, полученная при совмещении поверхности геометрического тела с плоскостью (без наложения элементов поверхности друг на друга).

Начертательная геометрия задачи с решением

Развертки необходимы при изготовлении изделий из листового материала. Построение разверток поверхностей многогранников рассмотрим на примерах призмы и пирамиды.

Развертка боковой поверхности призмы, представленной на рис. 4.5, состоит из четырех прямоугольников, у которых одна сторона равна высоте призмы, а другие стороны равны сторонам основания призмы (рис. 4.6).

Для построения развертки боковой поверхности усеченной призмы наносим на развертку точки Начертательная геометрия задачи с решением расположенные на соответствующих ребрах. Чтобы получить полную развертку усеченной части призмы, к одному из участков линии пересечения Начертательная геометрия задачи с решением пристраиваем натуральную величину сечения.

Развертку усеченной части призмы обводим сплошной толстой основной линией, линии сгиба — штрихпунктирной с двумя точками линией. Достроив к сторонам прямоугольника верхнее и нижнее основание призмы, получим полную развертку ее поверхности.

Пересечение пирамиды проецирующей плоскостью

На рис. 4.7 приведено построение проекций линии пересечения четырехугольной пирамиды Начертательная геометрия задачи с решением фронтально-проецирующей плоскостью Начертательная геометрия задачи с решением.

Начертательная геометрия задачи с решением

Фронтальные проекции Начертательная геометрия задачи с решением вершин многоугольника сечения находятся в пересечении следа-проекции Начертательная геометрия задачи с решением плоскости Начертательная геометрия задачи с решением с фронтальными проекциями боковых ребер пирамиды. Проекции Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением точек 2 и 3, лежащих на ребрах Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением, совпадают, так как грань Начертательная геометрия задачи с решением является фронтально-проецирующей плоскостью. Горизонтальные и профильные проекции точек 1, 2, 3, 4 определяются по линиям связи на соответствующих ребрах пирамиды. Натуральная величина многоугольника сечения найдена способом перемены плоскостей проекций. Это четырехугольник Начертательная геометрия задачи с решением.

Развертка поверхности пирамиды

Развертка боковой поверхности пирамиды состоит из четырех треугольников — боковых граней пирамиды (рис. 4.8). Для построения развертки необходимо знать натуральную величину всех фигур, составляющих развертку.

В данном случае одна из сторон боковых граней определяется натуральной величиной горизонтальной проекции ребра основания пирамиды, поскольку основание пирамиды занимает горизонтальное положение. На рис. 4.7 видно, что ребро Начертательная геометрия задачи с решением параллельно фронтальной плоскости, следовательно проекция Начертательная геометрия задачи с решением — его истинная величина. Для определения натуральной величины других боковых ребер используем способ вращения вокруг оси, проходящей через вершину Начертательная геометрия задачи с решением перпендикулярно плоскости Начертательная геометрия задачи с решением.

Поворачиваем ребра Начертательная геометрия задачи с решением до положения, параллельного плоскости Начертательная геометрия задачи с решением. Длины проекций Начертательная геометрия задачи с решением являются натуральными длинами соответствующих ребер.

На рис. 4.8 представлено построение полной развертки усеченной пирамиды. Вначале на плоскости чертежа строим треугольники — боковые грани пирамиды — по трем сторонам, последовательно достраивая треугольники друг к другу боковыми ребрами. Пристроив к стороне Начертательная геометрия задачи с решением одного из треугольников четырехугольное основание пирамиды, получим полную развертку ее поверхности.

Начертательная геометрия задачи с решением

Чтобы выделить на развертке усеченную часть пирамиды, находим положение вершины Начертательная геометрия задачи с решением фигуры сечения на ребре Начертательная геометрия задачи с решением. Зная натуральную величину многоугольника сечения Начертательная геометрия задачи с решением, последовательно засекаем на ребрах развертки точки Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением, используя величину сторон многоугольника сечения.

Полученные на развертке точки соединяем отрезками прямых. Пристраиваем затем натуральную величину сечения Начертательная геометрия задачи с решением к одному из участков линии пересечения Начертательная геометрия задачи с решением. Полученную полную развертку поверхности усеченной пирамиды обводим сплошной толстой основной линией, а линии сгиба — штрихпунктирной с двумя точками линией.

Задача с решением №5

Задача №1.

Правильная треугольная пирамида усечена двумя плоскостями: фронтально-проецирующей Начертательная геометрия задачи с решением и профильной Начертательная геометрия задачи с решением (рис. 4.9). Построить недостающие проекции усеченной пирамиды.

Начертательная геометрия задачи с решением

Решение:

Плоскость а пересекает грань Начертательная геометрия задачи с решением по отрезку 1-2, грань Начертательная геометрия задачи с решением по отрезку 2-3, грань Начертательная геометрия задачи с решением по отрезку 1-4.

Плоскость р пересекает грань Начертательная геометрия задачи с решением по отрезку 3-5, а грань Начертательная геометрия задачи с решением по отрезку 4-5. При построении проекций точек, принадлежащих линии пересечения, следует учитывать, что профильные проекции Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением‘ совпадают, так как грань SAB пирамиды является профильно-проецирующей плоскостью.

Недостающие проекции точки 1, расположенной на ребре Начертательная геометрия задачи с решением, и точки 5, расположенной на ребре Начертательная геометрия задачи с решением, построены при помощи линий связи. Проекции точки 2, расположенной на ребре Начертательная геометрия задачи с решением, определены при помощи линий связи сначала на профильной проекции ребра, а затем на горизонтальной.

Горизонтальные проекции точек 3 и 4 получены с помощью вспомогательной прямой Начертательная геометрия задачи с решением, принадлежащей грани Начертательная геометрия задачи с решением, и прямой Начертательная геометрия задачи с решением, принадлежащей грани Начертательная геометрия задачи с решением.

Построив горизонтальные проекции Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением этих прямых, по линии связи определим горизонтальные проекции точек 3 и 4, а затем их профильные проекции.

Плоскости Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением пересекаются по фронтально-проецирующей прямой 3-4. Соединив построенные проекции точек, получим проекции линии пересечения.

Вопросы для контроля

  1. Какая фигура называется многогранником?
  2. Дайте определение призмы, пирамиды, правильного многогранника.
  3. Как определить недостающую проекцию точки на поверхности многогранника?
  4. Что представляет собой сечение многогранника плоскостью?
  5. В чем различие способов ребер и граней?
  6. Как используется способ перемены плоскостей проекций при построении сечения многогранника плоскостью?

Поверхности вращения

Поверхность вращения (рис. 5.1) получается вращением прямолинейной или криволинейной образующей Начертательная геометрия задачи с решением вокруг неподвижной прямой Начертательная геометрия задачи с решением — оси поверхности. За ось вращения обычно принимается вертикальная прямая. Каждая точка образующей (например, точка Начертательная геометрия задачи с решением) описывает при своем вращении окружность с центром на оси Начертательная геометрия задачи с решением. Эти окружности называются параллелями. Наибольшая из этих параллелей — экватор, наименьшая — горло.

Плоскости, проходящие через ось вращения, пересекают поверхность по меридианам. Меридиан, расположенный в плоскости, параллельной Начертательная геометрия задачи с решением, называется главным.

Поверхность вращения называют закрытой, если криволинейная образующая пересекает ось поверхности в двух точках. Если образующая — прямая линия, то получается линейчатая поверхность вращения, если кривая — нелинейчатая.

Замкнутую область пространства вместе с ее границей (поверхностью) называют геометрическим телом.

Цилиндр вращения (рис. 5.2) образуется вращением прямой Начертательная геометрия задачи с решением вокруг параллельной ей оси Начертательная геометрия задачи с решением. Все точки образующей Начертательная геометрия задачи с решением (например, точка Начертательная геометрия задачи с решением) описывают окружности (параллели), равные окружностям оснований цилиндра.

Начертательная геометрия задачи с решением

Конус вращения (рис. 5.3) образуется вращением прямой Начертательная геометрия задачи с решением вокруг пересекающейся с ней оси Начертательная геометрия задачи с решением. Все точки образующей Начертательная геометрия задачи с решением описывают окружности различных радиусов (для точки Начертательная геометрия задачи с решением — радиус Начертательная геометрия задачи с решением). Величина радиуса изменяется от нуля до радиуса окружности основания конуса.

Начертательная геометрия задачи с решением

Сфера (рис. 5.4) образуется вращением окружности вокруг ее оси Начертательная геометрия задачи с решением. Каждая точка образующей сферы при таком перемещении описывает свою окружность, радиус которой уменьшается при перемещении точки к полюсам. Например, точка Начертательная геометрия задачи с решением описывает параллель наибольшего радиуса (экватор). Для сферы экватор и меридианы — равные между собой окружности.

Построение точек лежащих на поверхности вращения

Точка принадлежит поверхности, если она находится на линии, лежащей на этой поверхности. В качестве таких линий могут быть выбраны образующие, параллели, меридианы и др. На рис. 5.5 показано построение проекций точек Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением, принадлежащих боковой поверхности цилиндра.

Начертательная геометрия задачи с решением

Горизонтальные проекции точек Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением (Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением) лежат на окружности. Профильные проекции этих точек Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением находятся при помощи линий связи.

Очерковые (крайние) образующие цилиндра разделяют фронтальную и профильные проекции на видимую и невидимые части. Так, образующие Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением делят цилиндрическую поверхность на видимую спереди и невидимую, образующие Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением — на видимую слева и невидимую. Невидимые проекции точки В указаны в скобках.

На рис. 5.6, а показано построение горизонтальной Начертательная геометрия задачи с решением и профильной Начертательная геометрия задачи с решением проекций точки Начертательная геометрия задачи с решением по заданной фронтальной проекции Начертательная геометрия задачи с решением на поверхности конуса.

Начертательная геометрия задачи с решением

Если задана горизонтальная проекция Начертательная геометрия задачи с решением точки Начертательная геометрия задачи с решением (рис. 5.6, а), то построение начинается с проведения горизонтальной проекции Начертательная геометрия задачи с решением образующей Начертательная геометрия задачи с решением, на которой находится точка Начертательная геометрия задачи с решением. Определив фронтальную проекцию Начертательная геометрия задачи с решениемэтой образующей, по линиям связи находим фронтальную проекцию Начертательная геометрия задачи с решением точки Начертательная геометрия задачи с решением, а затем и профильную Начертательная геометрия задачи с решением.

Образующие Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением разделяют коническую поверхность на видимую спереди и невидимую, а образующие Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением — на видимую слева и невидимую.

Проекции Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением находятся на невидимой части конуса. Горизонтальная проекция поверхности конуса является видимой.

На рис. 5.6, б показано построение недостающих проекций точек Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением при помощи параллелей. Через заданные проекции Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением проводятся проекции Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением параллелей Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением. Используя точки 1 и 2, лежащие на очерковых образующих, определим положение проекций Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением проведенных параллелей. По линиям связи найдем положение проекций Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением точки Начертательная геометрия задачи с решением и проекций Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением точки Начертательная геометрия задачи с решением.

На рис. 5.7 приведены проекции сферы, которые ограничены экватором Начертательная геометрия задачи с решением, фронтальным меридианом Начертательная геометрия задачи с решением и профильным Начертательная геометрия задачи с решением. Каждый из них проецируется на соответствующую плоскость проекций в виде окружности, на остальные — в виде отрезков прямых длиной, равной диаметру сферы. На этом же рисунке показано построение недостающих проекций точек Начертательная геометрия задачи с решением, Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением по заданным фронтальным проекциям этих точек. Точка Начертательная геометрия задачи с решением находится на экваторе Начертательная геометрия задачи с решением, точка Начертательная геометрия задачи с решением — на фронтальном меридиане Начертательная геометрия задачи с решением, точка Начертательная геометрия задачи с решением — на профильном меридиане Начертательная геометрия задачи с решением. Недостающие проекции определяются по линиям связи. Направление построений указано стрелками.

Начертательная геометрия задачи с решением

Экватор Начертательная геометрия задачи с решением разделяет сферу на видимую (верхняя половина на фронтальной проекции) и невидимую части на горизонтальной проекции. Фронтальный меридиан Начертательная геометрия задачи с решением разделяет сферу на видимую (нижняя половина горизонтальной проекции) и невидимую части на фронтальной проекции.

Профильный меридиан п разделяет сферу на видимую (левая половина на фронтальной проекции) и невидимую части на профильной проекции.

Так, на рис. 5.7 горизонтальная проекция Начертательная геометрия задачи с решением точки Начертательная геометрия задачи с решением невидимая (взята в скобки), так как находится на нижней (невидимой) половине сферы. На поверхности сферы можно провести множество параллелей, соответствующих плоскостям проекций. Эти параллели используются для построения проекций точек на сфере.

По фронтальной проекции Начертательная геометрия задачи с решением точки Начертательная геометрия задачи с решением найдена горизонтальная Начертательная геометрия задачи с решением как принадлежащая горизонтальной параллели Начертательная геометрия задачи с решением. Для построения горизонтальной проекции Начертательная геометрия задачи с решением использована точка 1, принадлежащая фронтальному меридиану. Профильная проекция Начертательная геометрия задачи с решением точки Начертательная геометрия задачи с решением построена при помощи линий связи и находится на невидимой (правой половине) части сферы.

Пересечение поверхностей вращения плоскостью

Линия пересечения кривой поверхности с плоскостью представляет собой плоскую кривую. Для построения этой кривой линии на чертеже находят проекции ее отдельных точек, соединяемых с помощью лекала.

Для нахождения точек линии пересечения применяются вспомогательные секущие плоскости (проецирующие или плоскости уровня). Вспомогательные плоскости выбираются так, чтобы в пересечении с кривой поверхностью получались простейшие линии — прямые и окружности. Задача на построение линии пересечения кривой поверхности плоскостью значительно упрощается, если заданные секущие плоскости являются плоскостями частного положения.

Пересечение цилиндра плоскостью

При пересечении цилиндра вращения плоскостью возможны случаи:

  1. секущая плоскость параллельна оси — в сечении цилиндрической поверхности получаются две прямые (образующие) (рис. 5.8, я);
  2. секущая плоскость перпендикулярна оси — в сечении получается окружность, равная окружностям оснований (рис. 5.8, б);
  3. секущая плоскость наклонна к оси — в сечении получается эллипс, малая ось которого всегда равна диаметру цилиндра, а большая зависит от угла Начертательная геометрия задачи с решением (рис. 5.8, в).
Начертательная геометрия задачи с решением

Пример модели цилиндра, усеченного плоскостями, приведен здесь. На рис. 5.9 показано построение проекций цилиндра вращения, усеченного плоскостями частного положения Начертательная геометрия задачи с решением

Начертательная геометрия задачи с решением

Горизонтальная плоскость Начертательная геометрия задачи с решением пересекает поверхность цилиндра по части окружности, профильная плоскость Начертательная геометрия задачи с решением — по прямым Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением (образующим цилиндра), фронтально-проецирующая плоскость Начертательная геометрия задачи с решением — по части эллипса. Фронтальная проекция линий пересечения совпадает со следами-проекциями секущих плоскостей Начертательная геометрия задачи с решением, а горизонтальная -с окружностью основания цилиндра.

Построение профильной проекции сводится к построению профильных проекций точек по двум заданным (направление линий связи указано стрелками).

Обычно для построения точек линий сечения пользуются образующими, равноотстоящими друг от друга. Поэтому горизонтальная проекция цилиндра (окружность) разделена на 12 частей (точки 1,2, …, 12). Этой равномерной «разметкой» удобно пользоваться для создания не только проекций сечений, но и развертки.

Развертка поверхности цилиндра

Для построения развертки поверхности вращения, усеченной плоскостями, используется соответствующая многогранная фигура, вписанная в эту поверхность. Развертка получается приближенной, погрешность определяется количеством сторон многоугольника, вписанного в основание поверхности.

Построение развертки боковой поверхности цилиндра, приведенного на рис. 5.9, начинают с вычерчивания горизонтальной прямой, на которой откладывают длину окружности основания Начертательная геометрия задачи с решением и делят ее, например, на 12 равных частей. Из точек деления проводят перпендикуляры к отрезку Начертательная геометрия задачи с решением (рис. 5.10) и на них откладывают длины образующих от основания цилиндра до секущих плоскостей Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением.

Начертательная геометрия задачи с решением

Для построения точек Начертательная геометрия задачи с решением на развертке использовано расположение этих точек на горизонтальной проекции цилиндра (от точек деления откладывают длины дуг Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением). Точки Начертательная геометрия задачи с решением соединены прямыми линиями. Точки Начертательная геометрия задачи с решением соединяют плавной линией. К верхней части боковой развертки достраивают натуральные фигуры сечения плоскостями (часть эллипса, прямоугольник, сегмент окружности).

Пересечение конуса плоскостью

При пересечении конуса получаются различные виды кривых второго порядка.

  1. Эллипс (Начертательная геометрия задачи с решением) — секущая плоскость Начертательная геометрия задачи с решением пересекает весь конус (рис. 5.11).
  2. Окружность — секущая плоскость перпендикулярна оси конуса (рис. 5.12).
  3. Парабола — секущая плоскость Начертательная геометрия задачи с решением параллельна образующей конуса (рис. 5.13).
Начертательная геометрия задачи с решением
Начертательная геометрия задачи с решением
  1. Гипербола — плоскость Начертательная геометрия задачи с решением параллельна двум образующим конуса (рис. 5.14).
  2. Прямые линии — секущая плоскость проходит через вершину конуса (рис. 5.15).

На примере здесь показана последовательность построения линий пересечения конуса плоскостями.

На рис. 5.16 показано построение проекций усеченного конуса вращения плоскостями частного положения Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением.

Конус пересекают фронтально-проецирующие плоскости Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением. Фронтальная проекция линий пересечения совпадает с проекциями этих плоскостей.

Для построения точек линий сечения использованы образующие, равноотстоящие друг от друга. Поэтому горизонтальная проекция основания конуса (окружность) разделена на 12 равных частей (точки I, II, …, XII). Это позволяет использовать равноотстоящие образующие для построения развертки конуса.

Фронтальные проекции образующих пересекают проекцию Начертательная геометрия задачи с решением в точках Начертательная геометрия задачи с решениемНачертательная геометрия задачи с решением. Эти точки по линиям связи находятся на горизонтальных проекциях образующих, причем точки 4 и 10 определяются на профильной проекции, а затем на горизонтальной.

Вспомогательная плоскость Начертательная геометрия задачи с решением пересекает плоскость а по фронтально-проецирующей прямой, а конус — по окружности радиуса Начертательная геометрия задачи с решением. В пересечении прямой и дуги радиуса Начертательная геометрия задачи с решением определим горизонтальные проекции Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением.

Построения профильных проекций точек эллипса (Начертательная геометрия задачи с решением) сводится к построению проекций точек по двум заданным (по линиям проекционной связи).

Для построения точек, принадлежащих гиперболе, использованы точки Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением, находящиеся на образующих II и XII, а также точки Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением, принадлежащие вспомогательной горизонтальной плоскости Начертательная геометрия задачи с решением.

Построение развертки конуса

Построение развертки начинают с проведения из точки Начертательная геометрия задачи с решением (рис. 5.17) дуги окружности радиусом, равным длине образующей конуса Начертательная геометрия задачи с решением.

Длина дуги определяется центральным углом Начертательная геометрия задачи с решением:

Начертательная геометрия задачи с решением

где Начертательная геометрия задачи с решением — диаметр окружности основания конуса; Начертательная геометрия задачи с решением — длина образующей.

Дугу делят на 12 частей и полученные точки соединяют с точкой Начертательная геометрия задачи с решением. От вершины Начертательная геометрия задачи с решением на образующих откладывают действительные длины отрезков образующих от вершины конуса до секущих плоскостей. Действительные длины данных отрезков находят способом вращения их вокруг оси конуса. Для этого достаточно из фронтальных проекций точек фигур сечений провести горизонтальную прямую до пересечения с контурной образующей конуса, являющейся действительной ее длиной.

Для построения точек Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением, лежащих на основании конуса, следует отложить от точек III и XI соответствующие дуги (эти дуги на рис. 5.16 и 5.17 отмечены одной черточкой-штрихом).

Для построения точек Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением на развертке находят положения образующих, на которых есть эти точки, откладывая от точек II и XII соответствующие дуги (эти дуги отмечены двумя черточками-штрихами). Положение точек Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением на образующих находим, используя действительные длины отрезков Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением.

Для получения полной развертки пристраивают к развертке боковой поверхности часть основания конуса и натуральные величины сечений.

Начертательная геометрия задачи с решением

Натуральная величина эллипса построена по его осям (использован способ перемены плоскостей проекций), натуральная величина сечения профильной плоскостью Начертательная геометрия задачи с решением находится на профильной проекции (рис. 5.16).

Вопросы для контроля

  1. Какие линии получаются при пересечении цилиндра плоскостью?
  2. Какие линии получаются при пересечении конуса плоскостью?
  3. Какие поверхности вращения являются развертывающимися?
  4. Как построить развертку цилиндра?
  5. Какой метод используется для построения развертки конуса?

Пересечение прямой линии с многогранниками и поверхностями вращения

Точки пересечения прямой линии с геометрическими телами называют также точками встречи, одна из них является точкой входа, другая — точкой выхода.

Частные случаи определения точек пересечения

Частный способ определения указанных точек основывается на том, что пересекаемая грань перпендикулярна плоскости проекций, т. е. ее проекция представлена на этой плоскости в виде прямой и проекция искомой точки пересечения совпадает с проекцией точки пересечения этой прямой и заданной прямой. Другая проекция определяется по линиям связи из условия принадлежности точки прямой.

На рис. 6.1 показано построение точек пересечения прямых линий Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением поверхностью четырехугольной прямой призмы. Боковая поверхность призмы — проецирующая (грани перпендикулярны горизонтальной плоскости проекций). Поэтому горизонтальные проекции Начертательная геометрия задачи с решением точек пересечения находятся на «вырожденных» проекциях боковых граней, представляющих собой прямые линии. Фронтальные проекции этих точек определяются по линиям связи на фронтальных проекциях прямых Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением. Вторая точка пересечения (точка Начертательная геометрия задачи с решением) прямой Начертательная геометрия задачи с решением находится на пересечении с верхним основанием призмы, которое является горизонтальной плоскостью. Сначала отмечаем фронтальную проекцию Начертательная геометрия задачи с решением, а затем по линии связи находим горизонтальную Начертательная геометрия задачи с решением.

Видимость фронтальных проекций точек пересечения прямых Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением определяется видимостью граней, на которых лежат указанные точки. Так, точка Начертательная геометрия задачи с решением лежит на невидимой грани Начертательная геометрия задачи с решением, и поэтому участок прямой Начертательная геометрия задачи с решением от проекции Начертательная геометрия задачи с решениемдо ребра Начертательная геометрия задачи с решением невидим. Участки прямых, расположенных внутри тел, изображаются невидимыми. Участок горизонтальной прямой Начертательная геометрия задачи с решением от точки Начертательная геометрия задачи с решением видим, так как точка Начертательная геометрия задачи с решением расположена на верхнем основании призмы.

На рис. 6.2 показано построение точек пересечения прямых Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением с поверхностью цилиндра вращения.

Начертательная геометрия задачи с решением

Горизонтальные проекции точек Начертательная геометрия задачи с решением находятся на пересечении окружности (горизонтальной проекции боковой поверхности цилиндра) с проекциями прямых, фронтальная проекция точки Начертательная геометрия задачи с решением — на пересечении горизонтальной плоскости верхнего основания с проекцией прямой.

При определении видимости фронтальных проекций прямых Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением следует учесть, что проекции Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением расположены на невидимой части цилиндра и поэтому участки прямых Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением от проекций Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением до очерковой образующей невидимы.

Горизонтальная проекция точки Начертательная геометрия задачи с решением расположена на верхнем основании цилиндра, поэтому проекция Начертательная геометрия задачи с решением до точки Начертательная геометрия задачи с решением видима.

На рис. 6.3 показано построение точек пересечения проецирующих прямых Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением с поверхностью пирамиды. Фронтальные проекции Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением точек пересечения фронтально-проецирующей прямой Начертательная геометрия задачи с решением совпадают с «вырожденной» проекцией прямой, а горизонтальные проекции находятся на прямых Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением граней Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением.

Горизонтальные проекции точек пересечения Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением горизонтально-проецирующей прямой Начертательная геометрия задачи с решением совпадают с «вырожденной» проекцией прямой, фронтальная проекция точки Начертательная геометрия задачи с решением находится на прямой Начертательная геометрия задачи с решением грани Начертательная геометрия задачи с решением. Точка Начертательная геометрия задачи с решением находится на горизонтальной плоскости основания пирамиды.

На рис. 6.4 показано построение точек пересечения проецирующих прямых Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением с поверхностью конуса вращения. Проекции Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением определяются с помощью параллели (окружности радиуса Начертательная геометрия задачи с решением) конуса, проекция Начертательная геометрия задачи с решением — с помощью образующей Начертательная геометрия задачи с решением. Точка Начертательная геометрия задачи с решением расположена на горизонтальной плоскости основания конуса.

Начертательная геометрия задачи с решением

На рис. 6.5 для нахождения горизонтальных проекций точек пересечения Начертательная геометрия задачи с решением проецирующих прямых Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением с поверхностью сферы использованы параллели (окружности) сферы. Точки Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением находятся на параллели радиуса Начертательная геометрия задачи с решением, а точки Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением — на параллели радиуса Начертательная геометрия задачи с решением. Точки пересечения Начертательная геометрия задачи с решением расположены на видимых участках проекций сферы.

Возможно эта страница вам будет полезна:

Задачи по начертательной геометрии

Определение точек пересечения прямой с поверхностью

В общем случае точки пересечения прямой линии с поверхностью геометрических тел находятся следующим образом:

  • через данную прямую проводится вспомогательная плоскость;
  • строится линия пересечения геометрического тела вспомогательной плоскостью;
  • определяются точки пересечения построенной линии и заданной прямой. Эти точки являются искомыми;
  • определяется видимость участков прямой линии.

Вспомогательную секущую плоскость выбирают так, чтобы она пересекала поверхность геометрического тела по линии, легко определяемой на чертеже, например состоящей из прямых или окружностей. Обычно в качестве вспомогательной плоскости выбирают проецирующую плоскость, проходящую через заданную прямую.

На рис. 6.6 показано нахождение точек пересечения прямой общего положения Начертательная геометрия задачи с решением с поверхностью пирамиды Начертательная геометрия задачи с решением.

Начертательная геометрия задачи с решением

Через прямую Начертательная геометрия задачи с решением проведена вспомогательная фронтально-проецирующая плоскость Начертательная геометрия задачи с решением, пересекающая поверхность пирамиды по линии 1-2-3. На пересечении этой линии с прямой Начертательная геометрия задачи с решением находятся искомые точки пересечения. Видимость участков прямой линии определяется видимостью граней, на которых лежат точки пересечения Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением. Так, на горизонтальной проекции (рис. 6.6, б) точки Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением расположены на видимых проекциях Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением граней Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением, а на фронтальной проекции точка Начертательная геометрия задачи с решением лежит на невидимой грани Начертательная геометрия задачи с решением. Поэтому участок фронтальной проекции Начертательная геометрия задачи с решением от Начертательная геометрия задачи с решением до ребра Начертательная геометрия задачи с решением невидим.

Для нахождения точек пересечения конуса вращения с горизонтальной прямой Начертательная геометрия задачи с решением (рис. 6.7) использована вспомогательная горизонтальная плоскость Начертательная геометрия задачи с решением пересекающая конус по окружности. На рис. 6.8 для определения точек пересечения сферы с фронтальной прямой Начертательная геометрия задачи с решением использована фронтальная плоскость Начертательная геометрия задачи с решением. В заключение определяется видимость участков прямых относительно точек пересечения.

Вопросы для контроля

  1. Поясните способ определения точек пересечения прямой с поверхностью геометрических тел.
  2. С помощью каких преобразований можно упростить задачу построения точек пересечения прямой общего положения с конусом?

Взаимное пересечение поверхностей геометрических тел

Линия пересечения поверхностей геометрических тел в общем случае является пространственной и может распадаться на две и более частей. Линию пересечения строят по точкам, которые подразделяются на характерные (опорные) и промежуточные.

Общим способом построения этих точек является способ вспомогательных секущих плоскостей. При пересечении заданных поверхностей вспомогательной плоскостью определяются линии пересечения ее с данными поверхностями, а в пересечении этих линий получаются точки, принадлежащие искомой линии пересечения.

В качестве вспомогательных секущих плоскостей чаще всего используют плоскости, параллельные одной из плоскостей проекций. Положение их выбирают такое, чтобы они пересекали заданные поверхности по простейшим линиям — прямым или окружностям.

Построение линии пересечения многогранников

При решении задач используется один из следующих способов:

  1. способ ребер (пересечение прямой линии с плоскостью);
  2. способ граней (взаимное пересечение плоскостей).

Преимущество отдается тому из способов, который дает более простое решение.

Рассмотрим построение линии пересечения пирамиды с призмой (рис. 7.1).

Грань Начертательная геометрия задачи с решением призмы — горизонтальная плоскость Начертательная геометрия задачи с решением, пересекающая боковую поверхность пирамиды по ломаной линии, звенья которой параллельны сторонам основания Начертательная геометрия задачи с решением пирамиды. По фронтальной проекции точки Начертательная геометрия задачи с решением, расположенной на ребре Начертательная геометрия задачи с решением пирамиды, найдем ее горизонтальную проекцию Начертательная геометрия задачи с решением и, проведя звенья ломаной линии, определим точки Начертательная геометрия задачи с решением Начертательная геометрия задачи с решением

Горизонтальные проекции Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением точек пересечения ребер Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением с гранями призмы определяются с помощью линий связи. Горизонтальные проекции Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением точек пересечения ребра Начертательная геометрия задачи с решением призмы с поверхностью пирамиды определим с помощью горизонтальной плоскости Начертательная геометрия задачи с решением, проведенной через ребро Начертательная геометрия задачи с решением призмы. Плоскость Начертательная геометрия задачи с решением пересекает поверхность пирамиды по линиям, параллельным сторонам основания пирамиды. Спроецировав точку Начертательная геометрия задачи с решением, лежащую на ребре Начертательная геометрия задачи с решением пирамиды, через проекцию Начертательная геометрия задачи с решением проведем линии, параллельные Начертательная геометрия задачи с решением

Начертательная геометрия задачи с решением

и Начертательная геометрия задачи с решением. Эти линии пересекаются с горизонтальной проекцией ребра Начертательная геометрия задачи с решением призмы в точках Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением.

На рис. 7.2 показано построение линии пересечения двух призм, боковые поверхности которых являются проецирующими.

Начертательная геометрия задачи с решением

Рассматривая положение горизонтальных и профильных проекций многогранников, отмечаем, что призма Начертательная геометрия задачи с решением пересекает боковую поверхность призмы Начертательная геометрия задачи с решением. При пересечении получаются две замкнутые ломаные линии: одна из них — пространственная (пересекаются две грани призмы Начертательная геометрия задачи с решением), другая — плоская (пересекается одна грань).

Горизонтальная проекция линий пересечения совпадает с горизонтальной проекцией вертикальной призмы, а профильная — с профильной проекцией горизонтальной призмы. Отмечая точки пересечения Начертательная геометрия задачи с решением горизонтальных проекций ребер Начертательная геометрия задачи с решением с горизонтальной проекцией призмы Начертательная геометрия задачи с решением при помощи линий связи находим их фронтальные проекции.

Фронтальные проекции Начертательная геометрия задачи с решением точек пересечения ребра Начертательная геометрия задачи с решением с боковой поверхностью призмы Начертательная геометрия задачи с решением определим по линиям связи, используя их профильные проекции Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением. Последовательно соединяя найденные точки пересечения, принадлежащие одним и тем же граням, построим две ломаные линии 1-3-8-5-7-1 и 2-4-6-2.

Построение линии пересечения поверхностей вращения с многогранниками

Линия пересечения многогранника с телом вращения в общем случае состоит из отдельных участков кривых линий, получающихся при пересечении граней многогранника с поверхностью вращения. Точки перехода от одного участка к другому находятся на пересечении ребер многогранника с телом вращения.

Пример пространственной модели конуса, пересекающегося с треугольной призмой.

Последовательность операций при построении линии пересечения на чертеже следующая:

  • определяются точки пересечения ребер многогранника с поверхностью вращения;
  • находятся точки, принадлежащие линиям пересечения отдельных граней многогранника с телом вращения. Построение начинают с определения характерных (опорных) точек линии — высшие и низшие, ближайшие и наиболее удаленные, крайние слева и справа и т. д. Точки определяются визуально по чертежу;
  • определяется видимость проекций участков линии пересечения.

Рассмотрим построение линии пересечения поверхности прямой трехгранной призмы с поверхностью цилиндра вращения (рис. 7.3). Боковые грани призмы являются горизонтально-проецирующими плоскостями, а ось цилиндра перпендикулярна профильной плоскости проекций.

Начертательная геометрия задачи с решением

При построении точек линии пересечения многогранников с телами вращения используют вспомогательные секущие плоскости. Их располагают так, чтобы они пересекали данные поверхности по простым линиям (прямым или окружностям).

Грань призмы Начертательная геометрия задачи с решением параллельна оси цилиндра и пересекает поверхность цилиндра по прямой 2-3 (образующая цилиндра).

Грани Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением наклонены к оси цилиндра и пересекают его поверхность по кривым (частям эллипсов).

Горизонтальная проекция линии пересечения совпадает с проекцией боковой поверхности призмы, а профильная проекция совпадает с проекцией боковой поверхности цилиндра.

Характерными точками линии пересечения являются точки пересечения 1, 2, 3 ребер призмы с поверхностью цилиндра (фронтальные проекции этих точек определяем с помощью линий связи, проведенных через их профильные проекции). Точки 4 и 5 разделяют фронтальную проекцию линии пересечения на видимую и невидимую части.

Построение промежуточных точек 6, 7, 8, 9 выполняем следующим образом. На одной из имеющихся проекций линии пересечения (горизонтальной или профильной) намечаем проекции точек и с помощью линий связи строим недостающие проекции.

По построенным точкам проводим фронтальную проекцию линии пересечения. Видимой является часть Начертательная геометрия задачи с решением, расположенная на видимой проекции цилиндра. Часть фронтальных проекций ребер Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением закрывается очерком цилиндра.

На рис. 7.4 приведено построение линии пересечения сферы с прямой трехгранной призмой. Боковые ребра призмы перпендикулярны горизонтальной плоскости проекций. Характерными точками линии пересечения являются точки 1 и 2 — точки пересечения ребер призмы со сферой (обозначение точек линии пересечения приведено лишь на одной симметричной части). Для построения этих точек использованы фронтальные плоскости Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением, проведенные через ребра призмы и пересекающие сферу по окружностям радиусов Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением.

Начертательная геометрия задачи с решением

Фронтальную проекцию Начертательная геометрия задачи с решением точки 1 можно определить и по профильной проекции с помощью линий связи. Так как грань призмы Начертательная геометрия задачи с решением является фронтальной плоскостью, то плоскость Начертательная геометрия задачи с решением позволяет определить дугу окружности, по которой она пересекает сферу. Точка 3 — высшая точка этой дуги.

Грани Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением призмы пересекают сферу по дугам окружностей, которые на фронтальную и профильную плоскости проекций проецируются в виде частей эллипсов. Фронтальная проекция линии пересечения этих граней представляет собой две симметричные части, а профильные проекции совпадают.

Характерными точками фронтальной проекции линии пересечения являются также точки Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением. Точка 4 разделяет линию на видимую и невидимую части, точка 5 — высшая точка линии пересечения. Проекция Начертательная геометрия задачи с решением находится на очерке сферы — фронтальном меридиане, проекция Начертательная геометрия задачи с решением определена с помощью фронтальной плоскости Начертательная геометрия задачи с решением.

Для построения промежуточных точек Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением фронтальной проекции использованы фронтальные плоскости Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением. Каждая из фронтальных плоскостей пересекает сферу по окружности определенного радиуса, а призму — по горизонтально-проецирующим прямым.

Видимой частью фронтальной проекции линии пересечения является часть эллипса Начертательная геометрия задачи с решением, на профильной проекции симметричные части линии пересечения изображаются видимой линией. На фронтальной проекции части ребер Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением закрываются контуром сферы.

Построение линии пересечения поверхностей вращения

Линия пересечения двух поверхностей вращения в общем случае представляет пространственную кривую. Здесь приведен пример модели пересекающихся конуса и цилиндра. Линию пересечения поверхностей на чертеже строят по точкам.Общим способом построения является способ вспомогательных секущих поверхностей. В качестве поверхностей-посредников применяются плоскости или сферы.

Способ вспомогательных секущих плоскостей

Если одна из поверхностей является цилиндрической проецирующей поверхностью, то построение линии пересечения упрощается, так как в этом случае одна проекция линии пересечения совпадает с окружностью — проекцией цилиндра на перпендикулярную плоскость проекций.

На рис. 7.5 показано построение линии пересечения двух цилиндров вращения, оси которых скрещиваются. Ось горизонтального цилиндра — профильно-проецирующая, а ось вертикального — горизонтально-проецирующая.

Линией пересечения цилиндров является пространственная кривая, горизонтальная проекция которой совпадает с окружностью — горизонтальной проекцией вертикального цилиндра. Отмстим на этой окружности точки, принадлежащие линии пересечения: опорные 1, 2, 3, 4, лежащие на крайних образующих цилиндров, и промежуточную 5. Точки обозначены только на одной симметричной части линии пересечения.

Фронтальные проекции точек Начертательная геометрия задачи с решением лежащие на ближней, верхней и нижней образующих горизонтального цилиндра, определяем с помощью линий связи.

Начертательная геометрия задачи с решением

Для построения фронтальных проекций точек Начертательная геометрия задачи с решением использованы вспомогательные фронтальные плоскости Начертательная геометрия задачи с решением пересекающие оба цилиндра по образующим. Положение образующих вертикального цилиндра найдем по их горизонтальным

Начертательная геометрия задачи с решением

проекциям при помощи вертикальных линий связи. Для построения образующих горизонтального цилиндра использована его профильная проекция.

На рис. 7.6 показано построение линии пересечения конуса вращения и цилиндра вращения, у которых оси скрещиваются под прямым углом. Линией пересечения указанных тел является пространственная кривая, фронтальная проекция которой совпадает с окружностью цилиндра. Отметим здесь точки линии пересечения: опорные (1, 2, 3, 4, 5, 6) и промежуточные (7, 8, 9). Горизонтальные проекции точек 1 и 2 определим с помощью линий связи. Для построения горизонтальных проекций точек 3 и 4 использованы вспомогательные плоскости Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением.

Плоскость Начертательная геометрия задачи с решением пересекает цилиндр по крайней левой образующей, а конус — по окружности (параллели) радиуса Начертательная геометрия задачи с решением, пересечение которых определяет горизонтальную проекцию Начертательная геометрия задачи с решением точки 3.

Плоскость Начертательная геометрия задачи с решением, касающаяся цилиндра по его нижней образующей, позволяет построить горизонтальную проекцию Начертательная геометрия задачи с решением точки 4. Подобным образом с помощью горизонтальных плоскостей Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением находятся горизонтальные проекции точек 5 и 6, расположенных на ближней образующей конуса, а также горизонтальные проекции промежуточных точек 7, 8, 9.

Видимой частью горизонтальной проекции линии пересечения является линия Начертательная геометрия задачи с решением, принадлежащая верхней части цилиндра.

На примере здесь приведена пространственная модель конуса с цилиндрическим отверстием.

На рис. 7.7 показано построение линии пересечения полусферы с цилиндром вращения. Поскольку ось цилиндра перпендикулярна к горизонтальной плоскости проекций, то горизонтальная проекция линии пересечения совпадает с окружностью — горизонтальной проекцией цилиндра. Отметим на этой окружности опорные точки линии пересечения Начертательная геометрия задачи с решением и промежуточные Начертательная геометрия задачи с решением.

Точки Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением (низшая и высшая точки) расположены в горизонтально-проецирующей плоскости Начертательная геометрия задачи с решением, горизонтальный след-проекция Начертательная геометрия задачи с решением которой пройдет через горизонтальные проекции Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением осей тел вращения.

Чтобы определить фронтальные проекции Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением этих точек, повернем плоскость Начертательная геометрия задачи с решением с лежащими на ней линиями сечения сферы и цилиндра вокруг оси сферы до фронтального положения. Новое положение образующих цилиндра и контура сферы на плоскости проекций Начертательная геометрия задачи с решением даст точки Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением, по которым определяем проекции Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением.

Начертательная геометрия задачи с решением

Фронтальные проекции точек Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением, расположенных на фронтальном меридиане сферы, определим с помощью линий связи.

Для построения фронтальных проекций опорных точек Начертательная геометрия задачи с решением размещенных на крайних образующих цилиндра, и точек Начертательная геометрия задачи с решением находящихся на профильном меридиане сферы, использованы вспомогательные фронтальные плоскости Начертательная геометрия задачи с решением. Фронтальные проекции промежуточных точек Начертательная геометрия задачи с решением построены с помощью фронтальных плоскостей Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением. Эти плоскости пересекают цилиндр по образующим — прямым, а полусферу — по полуокружности. Так, вспомогательная плоскость Начертательная геометрия задачи с решением пересекает цилиндр по образующим, а полусферу — по дуге радиуса Начертательная геометрия задачи с решением.

Пересечение фронтальных проекций указанных линий сечения и даст точки Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением. Видимой частью фронтальных проекции является линия Начертательная геометрия задачи с решением, принадлежащая видимой (передней) части цилиндра.

Способ вспомогательных сфер

В некоторых случаях для построения линии пересечения двух поверхностей вращения целесообразно применять в качестве секущих поверхностей сферы. Этот способ основан на свойстве сферы пересекаться с любой поверхностью вращения, ось которой проходит через центр сферы, по окружности.

Чтобы сфера одновременно пересекала две поверхности по окружностям, необходимо выполнить следующие условия:

  1. оси поверхностей вращения должны пересекаться (точку пересечения принимают за центр вспомогательных концентрических сфер);
  2. оси поверхностей вращения должны располагаться параллельно какой-либо плоскости проекций.

На рис. 7.8 показано построение линии пересечения двух конусов с пересекающимися осями, параллельными плоскости Начертательная геометрия задачи с решением.

Начертательная геометрия задачи с решением

Линия пересечения — симметричная пространственная кривая. Фронтальные проекции симметричных половин совпадают и образуют кривую 2-го порядка. Точки 1 и 2, находящиеся в пересечении образующих конусов, очевидны. Остальные точки определены с помощью вспомогательных сфер с центром в точке Начертательная геометрия задачи с решением — точке пересечения осей конусов. С помощью сферы Сф. 1 (наименьшей из всех возможных) построена крайняя левая точка фронтальной проекции линии пересечения.

Эта сфера касается поверхности конуса с вертикальной осью по окружности радиуса Начертательная геометрия задачи с решением и пересекает другой конус по окружности радиуса Начертательная геометрия задачи с решением. В пересечении этих окружностей получается фронтальная проекция Начертательная геометрия задачи с решением. Для определения фронтальной проекции точки 4, расположенной на ближайшей образующей конуса с горизонтальной осью, использована сфера Сф. 2.

Радиус Начертательная геометрия задачи с решением этой сферы подобран так, чтобы окружность пересечения ее с поверхностью вертикального конуса лежала в плоскости Начертательная геометрия задачи с решением С помощью сферы Сф. 3 определена фронтальная проекция Начертательная геометрия задачи с решением точки 5.

Применение способа сфер позволяет построить линию пересечения поверхностей вращения, пользуясь только одной проекцией.

Особые случаи пересечения

При пересечении между собой кривых поверхностей линиями пересечения являются пространственные кривые, которые в ряде случаев могут распадаться на более простые линии. Рассмотрим несколько таких примеров.

Начертательная геометрия задачи с решением
  1. Два цилиндра с параллельными осями пересекаются по образующим.

На рис. 7.9 изображены пересекающиеся между собой цилиндры вращения с параллельными осями. Линиями пересечения являются общие образующие Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением.

  1. Если две поверхности второго порядка описаны около третьей или вписаны в нее, то линия их пересечения распадается на две плоские кривые второго порядка. Плоскости этих кривых проходят через прямую, соединяющую точки пересечения линий касания.

На рис. 7.10 изображены пересекающиеся между собой цилиндр и конус, касающиеся сферы радиуса Начертательная геометрия задачи с решением. Линии касания -окружности, плоскости которых параллельны фронтальной и профильной плоскостям проекций.

Плоскости касания пересекаются между собой по фронтально-проецирующей прямой Начертательная геометрия задачи с решением. Фронтальная проекция линии пересечения — два эллипса, плоскости которых проходят через прямую Начертательная геометрия задачи с решением и являются фронтально-проецирующими плоскостями. Большие оси эллипсов — отрезки 1-2 и 3-4, а малые равны диаметру цилиндра. Горизонтальная проекция линии пересечения находится из условия принадлежности ее точек поверхности конуса.

  1. Соосные поверхности вращения (т. е. поверхности с общей осью) пересекаются по окружностям.

Если ось вращения соосных поверхностей перпендикулярна к какой-либо плоскости проекций, то линия их пересечения проецируется на эту плоскость в виде окружности, а на другую плоскость проекций — в прямую линию.

На рис. 7.11 даны примеры пересечения соосных поверхностей вращения (ось вращения перпендикулярна плоскости Начертательная геометрия задачи с решением). На рис. 7.11, а приведены цилиндр и конус, б — конус и сфера, в — две сферы. За ось сферы можно принять любой ее диаметр. Поэтому сфера, центр которой находится на оси поверхности вращения, пересекается с этой поверхностью по окружности.

Начертательная геометрия задачи с решением
Начертательная геометрия задачи с решением

Вопросы для контроля

  1. Поясните общий способ построения линии пересечения двух поверхностей.
  2. Какие точки линии пересечения являются характерными (опорными)?
  3. Как определяется видимость линии пересечения?
  4. Что представляет собой линия пересечения тела вращения с многогранником?
  5. При каком взаимном положении поверхностей вращения возможно применение вспомогательных секущих сфер?
  6. Какие линии образуются при взаимном пересечении: а) цилиндров с параллельными осями; б) конусов с общей вершиной?

Аксонометрические проекции

Теоретические основы построения аксонометрических проекций

Аксонометрическая проекция, или просто аксонометрия, даст наглядное изображение предмета на одной плоскости. Слово аксонометрия означает оссизмерение.

Способ аксонометрического проецирования состоит в том, что данную фигуру вместе с осями прямоугольных координат, к которым она отнесена в пространстве, параллельно проецируют на некоторую плоскость, принятую за плоскость аксонометрических проекций (ее называют также картинной плоскостью). При различном взаимном расположении осей координат в пространстве и плоскости аксонометрической проекции, а также при разном направлении проецирования можно получить множество аксонометрических проекций, отличающихся одна от другой направлением аксонометрических осей и масштабами по ним.

В конструкторской документации аксонометрические проекции стандартизованы в ГОСТ 2.317-69. Он предусматривает три вида аксонометрических проекций:

  • прямоугольная изометрия;
  • прямоугольная диметрия;
  • фронтальная косоугольная диметрия.

Рассмотрим, как будут направлены аксонометрические оси, а также как будет осуществляться масштабирование по ним в случае направления проецирования, перпендикулярного аксонометрической плоскости проекций, т. е. для прямоугольной аксонометрической проекции. На рис. 8.1 изображена пространственная система прямоугольных координат Начертательная геометрия задачи с решением а также единичные отрезки Начертательная геометрия задачи с решением на осях координат и их проекции в направлении Начертательная геометрия задачи с решением на некоторую (картинную) плоскость Начертательная геометрия задачи с решением, являющуюся аксонометрической плоскостью проекций.

Проекции Начертательная геометрия задачи с решением: отрезка Начертательная геометрия задачи с решением на соответствующих аксонометрических осях Начертательная геометрия задачи с решением в общем случае не равны отрезку в и не равны между собой.

Эти проекции являются единицами измерения по аксонометрическим осям — аксонометрическими масштабами.

Отношения: Начертательная геометрия задачи с решением называют коэффициентами искажения по аксонометрическим осям.

В частном случае положение картинной плоскости можно выбрать таким, что аксонометрические единицы — отрезки Начертательная геометрия задачи с решением — будут равны между собой или будет равна между собой пара этих отрезков.

При Начертательная геометрия задачи с решением аксонометрическую проекцию называют изометрической, искажения по всем осям в ней одинаковы. При равенстве аксонометрических единиц по двум осям, обычно при Начертательная геометрия задачи с решением, имеем диметрическую проекцию.

Отрезки Начертательная геометрия задачи с решением являются аксонометрическими проекциями отрезков Начертательная геометрия задачи с решением. Обозначим углы между осями координат и их проекциями на плоскости Начертательная геометрия задачи с решением через Начертательная геометрия задачи с решением. Тогда Начертательная геометрия задачи с решением. Эти отношения являются коэффициентами искажения, т. е. Начертательная геометрия задачи с решением Поскольку треугольники Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением прямоугольные, то сумма квадратов направляющих косинусов равна единице:

Начертательная геометрия задачи с решением

Отсюда Начертательная геометрия задачи с решением или Начертательная геометрия задачи с решением следовательно, Начертательная геометрия задачи с решением Таким образом: Начертательная геометрия задачи с решением т. е. сумма квадратов коэффициентов искажения равна 2.

Прямоугольная изометрическая проекция

Прямоугольная (ортогональная) изометрическая проекция образуется при прямоугольном проецировании предмета и его координатных осей на плоскость аксонометрических проекций, одинаково наклоненную к каждой координатной оси.

При таком проецировании все три коэффициента искажений будут равны между собой: Начертательная геометрия задачи с решением тогда Начертательная геометрия задачи с решением откуда Начертательная геометрия задачи с решением. Углы между аксонометрическими осями будут равны Начертательная геометрия задачи с решением.

При построении изометрической проекции размеры предмета, откладываемые по аксонометрическим осям, необходимо умножать на 0,82. ГОСТ 2.317-69 допускает для упрощения построений принимать коэффициенты искажений равными единице. При этом увеличение изображения предмета составляет Начертательная геометрия задачи с решением. Каждый отрезок, направленный по осям Начертательная геометрия задачи с решением или параллельно им, сохраняет свою величину.

Расположение осей изометрической проекции показано на рис. 8.2, а.

Начертательная геометрия задачи с решением

Все отрезки прямых, которые были параллельны осям Начертательная геометрия задачи с решением на комплексном чертеже, останутся параллельными соответствующим осям в изометрической проекции. На рис. 8.2, б приведена изометрическая проекция отрезка Начертательная геометрия задачи с решением, расположенного перпендикулярно профильной плоскости проекций.

На рис 8.3 показано построение эллипсов, в которые проецируются окружности, лежащие в плоскостях проекций или в плоскостях, параллельных им. Размер большой оси эллипса равен Начертательная геометрия задачи с решением малой — Начертательная геометрия задачи с решением где Начертательная геометрия задачи с решением — диаметр исходной окружности.

В учебных чертежах рекомендуется вместо эллипсов применять овалы, очерченные дугами окружностей. На этом же рисунке показано расположение осей овалов и один из способов построения овалов в прямоугольной изометрической проекции.

На рис. 8.4, а приведен чертеж цилиндра, усеченного несколькими плоскостями, и его изометрическая проекция (рис. 8.4, б), на которой показано построение точки Начертательная геометрия задачи с решением, принадлежащей одной из линий сечения.

Начертательная геометрия задачи с решением

Здесь используются все три оси координат. Сначала по оси Начертательная геометрия задачи с решением откладывается значение Начертательная геометрия задачи с решением, измеренное на горизонтальной проекции цилиндра, далее из этой точки проводится линия, параллельная оси Начертательная геометрия задачи с решением, на которой откладывается величина Начертательная геометрия задачи с решением, измеренная также на горизонтальной проекции. В конечной точке этого отрезка проводится вертикальная линия длиной Начертательная геометрия задачи с решением, измеренной на фронтальной проекции цилиндра. Аналогично находятся остальные точки сечения цилиндра в количестве, необходимом для получения качественной линии пересечения.

Начертательная геометрия задачи с решением

Прямоугольная диметрическая проекция

Прямоугольная (ортогональная) диметрическая проекция образуется при прямоугольном проецировании предмета и связанных с ним координатных осей на плоскость аксонометрических проекций, одинаково наклоненную к двум координатным осям.

Коэффициенты искажений в диметрической проекции имеют следующие значения: Начертательная геометрия задачи с решением Начертательная геометрия задачи с решением Тогда Начертательная геометрия задачи с решением

В целях упрощения построений в соответствии с ГОСТ 2.317 приведенные коэффициенты искажений по осям Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением принимают равными единице; а по оси Начертательная геометрия задачи с решением коэффициент искажения равен 0,5. Следовательно, по осям Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением или параллельно им все размеры откладывают в натуральную величину, а по оси Начертательная геометрия задачи с решением размеры уменьшают вдвое. Увеличение в этом случае составляет Начертательная геометрия задачи с решением (выражается числом 1,06 = 1 / 0,94).

Расположение осей в диметрической проекции показано на рис. 8.5. Ось Начертательная геометрия задачи с решением наклонена по отношению к горизонтальной линии под углом Начертательная геометрия задачи с решением, а ось Начертательная геометрия задачи с решением — под углом Начертательная геометрия задачи с решением.

Начертательная геометрия задачи с решением

В диметричес