Примеры решения задач по теории автоматического управления

Оглавление:

Примеры решения задач по теории автоматического управления

Здравствуйте на этой странице я собрала теорию и практику с примерами решения задач по предмету теория автоматического управления с решением по каждой теме, чтобы вы смогли освежить знания!

Если что-то непонятно вы всегда можете написать мне в воцап и я вам помогу!

Теория автоматического управления

Теория автоматического управления (ТАУ), — научная дисциплина, предметом изучения которой являются информационные процессы, протекающие в системах управления техническими и технологическими объектами. ТАУ выявляет общие закономерности функционирования, присущие автоматическим системам различной физической природы, и на основе этих закономерностей разрабатывает принципы построения высококачественных систем управления.

Одномерные линейные непрерывные системы

Как правило, по структурной схеме при известных функциях передачи отдельных звеньев требуется найти эквивалентную передаточную функцию (ПФ) некоторого объединения звеньев (объекта, регулятора), либо всей системы в целом. Для этого используют правила преобразования последовательного, параллельного и встречно-параллельного (с обратной связью) соединений.

Эквивалентная передаточная функция последовательно соединенных звеньев равна произведению передаточных функций этих звеньев. Считают, что перестановка последовательно включенных по пути сигнала звеньев не влияет на результат, т. е.

Примеры решения задач по теории автоматического управления

Эквивалентная передаточная функция параллельно соединенных звеньев равна сумме передаточных функций этих звеньев (с учетом знака входа сумматора на пути сигнала).

Путь от входа к выходу системы называется прямой связью, от выхода ко входу — обратной связью. Если сигнал на пути меняет знак (обычно на инвертирующем входе сумматора), обратная связь называется отрицательной (ООС), если не меняет знак — положительной (ПОС). Замкнутый путь называется контуром, например, замкнутый контур обратной связи (ЗКОС). Эквивалентная передаточная функция соединения с обратной связью равна дроби, в числителе которой записана ПФ звена на прямом пути, а в знаменателе — единица минус произведение ПФ звеньев по замкнутому контуру обратной связи. Величина Примеры решения задач по теории автоматического управления. называется определителем ЗКОС.

Особенности этого вида соединения звеньев:

  • если в системе есть хоть одна обратная связь, передаточная функция системы будет всегда представлять собой дробь;
  • знак перед произведением ПФ звеньев в знаменателе (в определителе ЗКОС) обычно противоположен знаку обратной связи.

Для систем с перекрещивающимися (мостиковыми) связями применяют правило переноса: в переносимую ветвь вводят фиктивное звено с передаточной функцией, равной ПФ потерянного, либо обратной ПФ появившегося при переносе элемента.

По Мейсону структурная схема может быть описана целиком, без деления на звенья. Передаточная функция многоконтурной системы образует дробь, числитель которой равен сумме произведений передаточных функций прямых путей на совокупные определители ЗКОС, не касающихся этих путей, а знаменатель — единица минус сумма произведений определителей несоприкасающихся ЗКОС и передаточных функций общих ЗКОС. Следует внимательно относиться к ветвям, которые заходят извне в контур ОС, т.к. они могут образовывать неявные прямые пути по цепям обратных связей.

Предмет теория автоматического управления тау

Пример №1

Определить передаточную функцию схемы (рисунок 1.1,а).

Примеры решения задач по теории автоматического управления

Решение:

Видно, что без преобразований нельзя начинать сворачивать схему, в частности, нельзя объединить звенья Примеры решения задач по теории автоматического управления и Примеры решения задач по теории автоматического управления, как последовательно включенные, из-за связи в точке Примеры решения задач по теории автоматического управления. Перенесем ветвь из узла Примеры решения задач по теории автоматического управления в узел Примеры решения задач по теории автоматического управления (рисунок 1.1,6).

В исходной схеме на пути от точки Примеры решения задач по теории автоматического управления к входному сумматору не было звеньев, преобразующих сигнал, а в новой схеме на пути между теми же точками появляется звено с передаточной функцией Примеры решения задач по теории автоматического управления. Следовательно, в цепь переносимого воздействия нужно ввести фиктивное звено с обратной передаточной функцией, т. е. Примеры решения задач по теории автоматического управления или Примеры решения задач по теории автоматического управления.

После переноса начнем свертывание схемы, заменяя каждый раз несколько звеньев одним эквивалентным на основе правил 1-3 и увеличивая границы преобразуемого участка. Промежуточные (вспомогательные) ПФ обычно индексируют римскими цифрами, их используют временно и обязательно заменяют в итоге на ПФ с реально существующими индексами.

Примеры решения задач по теории автоматического управления

Конечный результат всегда представляется в виде простой рациональной дроби и выражается только через исходные передаточные функции. Сигнал не может пройти через одну и ту же точку дважды, поэтому появление в выражении кратных величин вида Примеры решения задач по теории автоматического управления или Примеры решения задач по теории автоматического управления и т. п. является признаком допущенной при преобразованиях ошибки.

Пример №2

Определить передаточную функцию схемы (рисунок 1.2).

Примеры решения задач по теории автоматического управления

Решение:

Применим правило Мейсона. В системе имеются обратные связи, поэтому ПФ представляет собой дробь. Прямой путь от входа Примеры решения задач по теории автоматического управления к выходу Примеры решения задач по теории автоматического управления только один, его касаются все пять ЗКОС, поэтому в числителе ПФ пишем просто произведение Примеры решения задач по теории автоматического управления. Знаменатель начинаем описывать с несоприкасающихся контуров — контур I не имеет общих точек с контуром III и вложенным в него контуром И, поэтому записываем сначала произведение их определителей. Контур IV соприкасается с контурами I и III, поэтому просто добавляем произведение звеньев по нему Примеры решения задач по теории автоматического управления, но умножаем его на определитель контура И, так как этот ЗКОС не имеет общих точек с IV. И в конце просто добавляем произведение звеньев Примеры решения задач по теории автоматического управления контура V, поскольку он соприкасается со всеми остальными ЗКОС

Примеры решения задач по теории автоматического управления

Дифференциальное уравнение

Поведение линейных, непрерывных, стационарных систем с сосредоточенными параметрами описывается во времени обыкновенным дифференциальным уравнением (ОДУ) с постоянными коэффициентами Примеры решения задач по теории автоматического управления

Примеры решения задач по теории автоматического управления

где слева — выходная функция Примеры решения задач по теории автоматического управления и ее производные (результат), справа — входная функция Примеры решения задач по теории автоматического управления и ее производные.

Для записи передаточной функции используется комплексная переменная Лапласа Примеры решения задач по теории автоматического управления (иногда обозначаемая символом Примеры решения задач по теории автоматического управления). Чтобы получить ПФ, достаточно в ОДУ заменить производные Примеры решения задач по теории автоматического управления на Примеры решения задач по теории автоматического управления в соответствующей степени, отбросить символы функций Примеры решения задач по теории автоматического управления и Примеры решения задач по теории автоматического управления и разделить многочлен правой части дифференциального уравнения на многочлен левой части.

При нулевых начальных условиях передаточная функция может быть получена и как отношение реакции (выходного сигнала) системы к входному сигналу, записанных в виде изображений по Лапласу.

Она может быть записана триадой: корни многочлена числителя (нули), корни многочлена знаменателя (полюса) и общий коэффициент усиления. На комплексной плоскости нули обозначают кружком, полюса — крестиком; общий коэффициент усиления отобразить невозможно и он должен указываться отдельно.

При переходе от разомкнутой системы к замкнутой, охваченной общей единичной отрицательной обратной связью (ООС), достаточно к знаменателю ПФ разомкнутой системы добавить ее числитель, чтобы получить ПФ замкнутой системы.

Пример №3

Определить передаточную функцию объекта регулирования, модель которого задана дифференциальным уравнением

Примеры решения задач по теории автоматического управления

Решение:

Сопоставляя производным соответствующую степень Примеры решения задач по теории автоматического управления, отбрасывая символы функций Примеры решения задач по теории автоматического управления и Примеры решения задач по теории автоматического управления и деля многочлен правой части дифференциального уравнения на многочлен левой части, получаем ПФ

Примеры решения задач по теории автоматического управления
Решение задач по теории автоматического управления

Пример №4

При единичном скачке Примеры решения задач по теории автоматического управления на входе реакция звена описывается функцией Примеры решения задач по теории автоматического управления. Найти передаточную функцию звена.

Решение:

Преобразуем по Лапласу входной и выходной сигналы, пользуясь таблицей соответствия оригиналов и изображений (приложение Примеры решения задач по теории автоматического управления). Изображение входного воздействия равно Примеры решения задач по теории автоматического управления, изображение реакции звена после приведения к общему знаменателю

Примеры решения задач по теории автоматического управления

Здесь единичный скачок не учитываем, хотя он и имеется в исходной функции, так как это просто указание на то, что сигнал на выходе появился скачком. Такое указание может и отсутствовать.

Делим изображение реакции на изображение входного воздействия и получаем передаточную функцию звена

Примеры решения задач по теории автоматического управления

Пример №5

Система имеет нуль -3, комплексные сопряженные полюса Примеры решения задач по теории автоматического управления и коэффициент усиления Примеры решения задач по теории автоматического управления. Определить ПФ системы после её замыкания единичной ООС.

Решение:

Передаточная функция разомкнутой системы равна

Примеры решения задач по теории автоматического управления

Добавляя к знаменателю числитель, получаем ПФ замкнутой системы

Примеры решения задач по теории автоматического управления

Принципиальная схема

Если анализируется принципиальная электрическая схема, передаточная функция составляется с учетом известных закономерностей работы таких схем. Для индуктивных элементов (катушек, дросселей) операторное реактивное сопротивление равно Примеры решения задач по теории автоматического управления для емкостных элементов Примеры решения задач по теории автоматического управления, где Примеры решения задач по теории автоматического управления — индуктивность (Генри), Примеры решения задач по теории автоматического управления -емкость (Фарад), Примеры решения задач по теории автоматического управления — комплексная переменная Лапласа.

В схемах с операционными усилителями (ОУ) учитывают, что инвертирующий вход изменяет знак (полярность) проходящего сигнала. Коэффициент усиления каскада на ОУ равен отношению эквивалентного сопротивления в цепи обратной связи к эквивалентному сопротивлению на входе усилителя.

По передаточной функции объекта можно записать дифференциальное уравнение, предполагая, что сокращение одинаковых нулей и полюсов не производилось. По изображению некоторого сигнала можно записать его оригинал.

Пример №6

Определить передаточную функцию схемы (рисунок 1.12).

Решение:

Схема представляет собой делитель напряжения с коэффициентом

Примеры решения задач по теории автоматического управления

поэтому передаточная функция равна

Примеры решения задач по теории автоматического управления

Пример №7

Определить передаточную функцию схемы (рисунок 1.13).

Решение:

Эквивалентное операторное сопротивление в цепи отрицательной обратной связи равно сумме

Примеры решения задач по теории автоматического управления

в итоге передаточная функция схемы на инвертирующем операционном усилителе будет равна

Примеры решения задач по теории автоматического управления

Пример №8

Составить структурную схему по дифференциальному уравнению объекта

Примеры решения задач по теории автоматического управления

Решение:

Прежде всего уравнение нормируют (делят все коэффициенты на коэффициент Примеры решения задач по теории автоматического управления при старшей производной левой части), получим

Примеры решения задач по теории автоматического управления

Затем составляют структурную схему, используя блоки интегрирования (т.е. деления на переменную Лапласа Примеры решения задач по теории автоматического управления), их число равно порядку системы Примеры решения задач по теории автоматического управления (в данном случае трём). С выхода каждого интегратора организуют обратные связи к общему (входному) сумматору с инвертирующим входом, начиная с коэффициента Примеры решения задач по теории автоматического управления при Примеры решения задач по теории автоматического управления-1 производной. С выхода интеграторов организуют связи с коэффициентами из правой части ОДУ к выходному сумматору объекта (если производные здесь отсутствуют, то выходной сумматор не нужен, а блок с коэффициентом Примеры решения задач по теории автоматического управления можно поместить и на выходе, и на входе системы, до главного сумматора). Полученная схема показана на рисунке 1.14.

Примеры решения задач по теории автоматического управления

Пример №9

Определить порядок объекта, записать его дифференциальное уравнение по передаточной функции

Примеры решения задач по теории автоматического управления

Решение:

Порядок объекта равен трем. Обозначив в соответствии с индексами передаточной функции выходную величину Примеры решения задач по теории автоматического управления, входную величину Примеры решения задач по теории автоматического управления, заменяем комплексную переменную Лапласа производной по времени соответствующего порядка

Примеры решения задач по теории автоматического управления

Временные характеристики. Реакция на произвольное воздействие

Для решения дифференциального уравнения (нахождения реакции системы) с помощью преобразования Лапласа необходимо:

  • найти корни характеристического уравнения Примеры решения задач по теории автоматического управления;
  • найти изображение реакции умножением ПФ на изображение входа по Лапласу Примеры решения задач по теории автоматического управления и записать его в виде суммы простых дробей по теореме разложения в соответствии с корнями характеристического уравнения;
  • найти коэффициенты числителей дробей (вычеты в полюсах);
  • найти оригинал для каждой дроби по таблице соответствия и записать конечное решение в виде суммы отдельных оригиналов.

Рекомендуется:

а) перед вычислением корней обязательно нормировать ПФ по старшему коэффициенту при Примеры решения задач по теории автоматического управления знаменателя;

б) не сокращать существующие нули и полюса с положительной действительной частью, ведущие к неустойчивости системы, если их части не являются целыми числами; остальные нули и полюса могут быть сокращены перед переходом во временную область;

в) для кратных полюсов записывать дробями все степени корня от наибольшей до первой в порядке их убывания;

г) комплексные сопряженные корни представлять одним общим квадратным трехчленом.

После разложения на простые дроби и вычисления вычетов полезно проверить правильность результата. Первое правило проверки -сумма дробей правой части должна быть равна изображению в левой части равенства. Второе правило проверки — сумма всех составляющих оригинала при Примеры решения задач по теории автоматического управления (начальное значение оригинала) в соответствии со свойствами преобразования Лапласа должна быть равна Примеры решения задач по теории автоматического управления.

Пример №10

Используя преобразование Лапласа, найти оригинал реакции на воздействие Примеры решения задач по теории автоматического управления системы с ПФ Примеры решения задач по теории автоматического управления. Находим изображение по Лапласу входного воздействия Примеры решения задач по теории автоматического управления, умножаем его на передаточную функцию системы, получаем изображение реакции

Примеры решения задач по теории автоматического управления

Решение:

При переходе от изображения к оригиналу коэффициент 4 сохраняется, полюс -2 образует составляющую Примеры решения задач по теории автоматического управления, а поскольку он кратный (два одинаковых корня), то появляется составляющая Примеры решения задач по теории автоматического управления и, наконец, оператор сдвига Примеры решения задач по теории автоматического управления при Примеры решения задач по теории автоматического управления с создаёт запаздывание во времени, которое отображается скачком со сдвигом вида Примеры решения задач по теории автоматического управления или, в данном случае, Примеры решения задач по теории автоматического управления. Окончательно оригинал равен Примеры решения задач по теории автоматического управленияПримеры решения задач по теории автоматического управления

Пример №11

Найти начальное, конечное значения и аналитическую запись для оригинала, если изображение по Лапласу отклика системы равно

Примеры решения задач по теории автоматического управления

Решение:

Начальное значение оригинала (при Примеры решения задач по теории автоматического управления) вычисляется как предел

Примеры решения задач по теории автоматического управления

для производной по времени Примеры решения задач по теории автоматического управления-го порядка от функции Примеры решения задач по теории автоматического управления производится умножение изображения на Примеры решения задач по теории автоматического управления т.е.

Примеры решения задач по теории автоматического управления

Поэтому

Примеры решения задач по теории автоматического управления

Конечное значение оригинала (при Примеры решения задач по теории автоматического управления) для устойчивых систем также вычисляется как предел

Примеры решения задач по теории автоматического управления
Примеры решения задач по теории автоматического управления

Для полной записи оригинала разлагаем изображение на простые дроби в соответствии с полюсами, находим вычеты Примеры решения задач по теории автоматического управления и Примеры решения задач по теории автоматического управления в полюсах методом подстановки полюсов (приложение Б)

Примеры решения задач по теории автоматического управления

По таблице соответствия оригиналов и изображений (приложение А) записываем оригинал в виде формулы Примеры решения задач по теории автоматического управления. Проверка: при Примеры решения задач по теории автоматического управления значение оригинала равно нулю, при Примеры решения задач по теории автоматического управления соответственно 3.

Переходная и импульсная функции

К типовым функциям времени (реакциям системы) относятся переходная и импульсная переходная (весовая) функции.

Переходной функцией Примеры решения задач по теории автоматического управления называется реакция системы на единичный скачок при нулевых начальных условиях. Реакция на скачок произвольной величины называется кривой разгона.

Импульсной (весовой) функцией Примеры решения задач по теории автоматического управления или Примеры решения задач по теории автоматического управления называется реакция системы на единичный импульс при нулевых начальных условиях. Она является оригиналом передаточной функции.

Поскольку всегда Примеры решения задач по теории автоматического управления то

Примеры решения задач по теории автоматического управления

Для оценки начального и конечного (установившегося) значений переходной характеристики объекта нужно найти отношение коэффициентов при Примеры решения задач по теории автоматического управления в степени Примеры решения задач по теории автоматического управления числителя и знаменателя ПФ в первом случае, и отношение свободных членов передаточной функции во втором (если объект устойчив).

Примеры решения задач по теории автоматического управления

Связь между импульсной и переходной функциями определяется соотношением

Примеры решения задач по теории автоматического управления

откуда

Примеры решения задач по теории автоматического управления

Иначе говоря, импульсная функция является производной по времени от переходной функции.

Решение задач по ТАУ

Пример №12

Для системы Примеры решения задач по теории автоматического управления найти Примеры решения задач по теории автоматического управления и Примеры решения задач по теории автоматического управления.

Решение:

Поскольку порядок многочлена числителя ПФ Примеры решения задач по теории автоматического управления равен порядку многочлена знаменателя Примеры решения задач по теории автоматического управления, начальное значение переходной функции равно

Примеры решения задач по теории автоматического управления

Коэффициент усиления в установившемся режиме равен

Примеры решения задач по теории автоматического управления

Пример №13

Определить передаточную функцию объекта регулирования, если его весовая функция равна

Примеры решения задач по теории автоматического управления

Решение:

По таблице соответствия АЛ находим изображение весовой функции (а это уже и есть передаточная функция объекта)

Примеры решения задач по теории автоматического управления

Приведя все дроби к общему знаменателю, получим ПФ в стандартном виде

Примеры решения задач по теории автоматического управления

Пример №14

Найти весовую функцию системы, если переходная функция равна

Примеры решения задач по теории автоматического управления

Решение:

Весовая функция равна производной по времени от переходной

Примеры решения задач по теории автоматического управления

Другой путь решения — через преобразование Лапласа

Примеры решения задач по теории автоматического управления

убираем нулевой корень s в знаменателе, принадлежащий входному воздействию — скачку, получаем ПФ или изображение весовой функции

Примеры решения задач по теории автоматического управления

откуда весовая функция

Примеры решения задач по теории автоматического управления

Свободное движение системы

В общем случае реакция системы состоит из вынужденной и свободной составляющих Примеры решения задач по теории автоматического управления, изображения которых имеют одинаковый знаменатель (характеристический полином системы)

Примеры решения задач по теории автоматического управления

Вынужденная составляющая Примеры решения задач по теории автоматического управления является реакцией системы на входное воздействие при нулевых начальных условиях Примеры решения задач по теории автоматического управления. Свободная составляющая Примеры решения задач по теории автоматического управления или переходный процесс автономной системы является решением однородного дифференциального уравнения (без правой части) и определяется начальными условиями.

Используют два способа вычисления совокупного переходного процесса. В первом случае система обычно задается ОДУ, производят в соответствии со свойством дифференцирования преобразования Лапласа индивидуальное преобразование каждого члена дифференциального уравнения, вычисляются одновременно вынужденная и свободная составляющие.

По второму способу выполняют независимое вычисление вынужденной и/или свободной составляющих, при этом система обычно задана ПФ или структурной схемой. Для вычисления Примеры решения задач по теории автоматического управления по Примеры решения задач по теории автоматического управления используется формула (схожая, но не равная вычислению производной)

Примеры решения задач по теории автоматического управления

Если рассчитывается полное движение системы с учетом ненулевых начальных условий, запрещается производить сокращения в левой части ОДУ (в характеристическом полиноме Примеры решения задач по теории автоматического управления системы). Вид характеристического полинома определяет свободную составляющую переходного процесса, т.е. реакцию на начальные условия.

Если начальные условия не заданы, то по умолчанию они считаются нулевыми. После получения результата стоит проверить, соответствует ли величина реакции на выходе при Примеры решения задач по теории автоматического управления заданным начальным условиям.

Пример №15

Для системы, заданной ОДУ Примеры решения задач по теории автоматического управления, найти реакцию на начальные условия Примеры решения задач по теории автоматического управления.

Решение:

Преобразуем индивидуально каждый член ОДУ по Лапласу с учетом свойств дифференцирования оригинала при ненулевых начальных условиях

Примеры решения задач по теории автоматического управления

Группируем и переносим подобные члены, подставляем значения Примеры решения задач по теории автоматического управления

Примеры решения задач по теории автоматического управления

Находим корни характеристического уравнения Примеры решения задач по теории автоматического управления по известной формуле

Примеры решения задач по теории автоматического управления

записываем разложение на простые дроби, вычисляем вычеты в полюсах (смотри приложение Б), переходим к оригиналу по таблице А.1

Примеры решения задач по теории автоматического управления

При Примеры решения задач по теории автоматического управления начальное значение Примеры решения задач по теории автоматического управления, как и было задано.

Пример №16

Система задана ОДУ

Примеры решения задач по теории автоматического управления

Найти реакцию системы, если

Примеры решения задач по теории автоматического управления

Решение:

Прежде всего находим изображение входного воздействия по Лапласу Примеры решения задач по теории автоматического управления из таблицы А.1. Вычисляем передаточную функцию и вынужденную составляющую переходного процесса

Примеры решения задач по теории автоматического управления

Определяем по характеристическому полиному числитель Примеры решения задач по теории автоматического управления и свободную составляющую переходного процесса

Примеры решения задач по теории автоматического управления

Полное описание переходного процесса

Примеры решения задач по теории автоматического управления

Частотные характеристики. Основные частотные характеристики

Аналитическое выражение для комплексного коэффициента передачи Примеры решения задач по теории автоматического управления можно получить по операторной передаточной функции Примеры решения задач по теории автоматического управления, приравняв в переменной Лапласа Примеры решения задач по теории автоматического управления действительную часть а нулю. Из комплексной передаточной функции

Примеры решения задач по теории автоматического управления

получают амплитудную (АЧХ) Примеры решения задач по теории автоматического управления, фазовую (ФЧХ) Примеры решения задач по теории автоматического управления, действительную (ВЧХ) Примеры решения задач по теории автоматического управления и мнимую (МЧХ) Примеры решения задач по теории автоматического управления частотные характеристики, связанные соотношениями

Примеры решения задач по теории автоматического управления

Если представить комплексный коэффициент передачи в виде дроби

Примеры решения задач по теории автоматического управления

то амплитудная характеристика будет равна

Примеры решения задач по теории автоматического управления

а фазовая характеристика

Примеры решения задач по теории автоматического управления

Обобщающей является амплитудно-фазовая частотная характеристика (АФЧХ или просто АФХ) — кривая (годограф), которую чертит на комплексной плоскости конец вектора Примеры решения задач по теории автоматического управления при изменении частоты Примеры решения задач по теории автоматического управления от 0 до Примеры решения задач по теории автоматического управления.

В ходе расчетов следует отбросить отрицательные, мнимые и комплексные частоты и по возможности сократить получающиеся выражения для действительной и мнимой частей на со.

При построении частотных характеристик учитывают гладкость кривой (при разрывах годограф изменяется асимптотически), указывают на графике стрелкой направление увеличения частоты и/или крайние частоты. В каком бы порядке не были расположены частоты в таблице, построение кривой следует всегда производить по возрастанию значений частоты.

Быстрая проверка правильности расчетов:

  • АФЧХ и АЧХ начинаются при значении Примеры решения задач по теории автоматического управления;
  • АФЧХ и АЧХ заканчиваются в нуле Примеры решения задач по теории автоматического управления или при Примеры решения задач по теории автоматического управления (для Примеры решения задач по теории автоматического управления);
  • АФЧХ устойчивой системы, не имеющей нулей, проходит по часовой стрелке столько квадрантов, каков порядок характеристического полинома.

Реакцию системы на гармоническое воздействие любой частоты со в показательной форме получают путем умножения на Примеры решения задач по теории автоматического управления амплитуды входного сигнала и добавления Примеры решения задач по теории автоматического управления к его фазе.

Примеры решения задач по ТАУ

Пример №17

Построить частотные характеристики системы с ПФ Примеры решения задач по теории автоматического управления.

Решение:

Подставляем Примеры решения задач по теории автоматического управления учитывая, что Примеры решения задач по теории автоматического управления, снижаем порядок Примеры решения задач по теории автоматического управления (Примеры решения задач по теории автоматического управления и т.п.), избавляемся от мнимости в знаменателе, умножая числитель и знаменатель дроби на комплексное выражение, сопряженное стоявшему в знаменателе, отделяем действительную и мнимую части, приводим в знаменателе подобные члены

Примеры решения задач по теории автоматического управления

В данном случае числители и знаменатели дробей (действительной и мнимой частей) на Примеры решения задач по теории автоматического управления сократить нельзя. Составляем таблицу (таблица 1), используя обязательные значения частот (можно взять больше точек, но не меньше), и подставляем эти значения:

  • крайние частоты 0 и Примеры решения задач по теории автоматического управления;
  • частоты пересечения характеристик с осями (определяются путем приравнивания числителей дробей мнимой и действительной части к нулю и решения полученного уравнения);
  • частоты разрыва характеристики (находят, приравнивая знаменатель нулю и решая уравнение) и близкие к ним (чуть больше-чуть меньше) частоты;
  • прочие частоты для повышения точности расчета.
Примеры решения задач по теории автоматического управления

Приравнивая Примеры решения задач по теории автоматического управления, получаем Примеры решения задач по теории автоматического управления, откуда Примеры решения задач по теории автоматического управления = 2,45.

Приравнивая Примеры решения задач по теории автоматического управления, получаем 10Примеры решения задач по теории автоматического управления = 0, откуда Примеры решения задач по теории автоматического управления = 0.

По виду биквадратного уравнения Примеры решения задач по теории автоматического управления определяем, что частот разрыва (действительных корней) нет. Частоты 1 и 3 рад/с добавлены произвольно для более точного построения графика.

По одной таблице можно построить АФЧХ на комплексной плоскости (рисунок 1.25, а), индивидуально ВЧХ и МЧХ (рисунок 1.25, б), и после дополнительных расчетов АЧХ и ФЧХ (рисунок 1.25, В).

Примеры решения задач по теории автоматического управления

Пример №18

Записать аналитически реакцию системы с известными АЧХ и ФЧХ (рисунок 1.26) на воздействие Примеры решения задач по теории автоматического управления

Примеры решения задач по теории автоматического управления

Решение:

Общий вид гармонического сигнала Примеры решения задач по теории автоматического управления. Следовательно, входное воздействие характеризуется параметрами: амплитуда 3,5, фаза 0 рад, частота Примеры решения задач по теории автоматического управления = 1 рад/с. Находим для этой частоты по графику

Примеры решения задач по теории автоматического управления

Отсюда амплитуда выходной величины равна 3,5 0,36 = 1,26; фаза выходной величины 0 — 0.785 рад и окончательный вид реакции

Примеры решения задач по теории автоматического управления

Пример №19

При воздействии Примеры решения задач по теории автоматического управления найти сигнал на выходе системы с передаточной функцией Примеры решения задач по теории автоматического управления.

Решение:

Получаем по ПФ аналитические выражения для АЧХ и ФЧХ

Примеры решения задач по теории автоматического управления

Для известной частоты 10 рад/с значения АЧХ и ФЧХ равны

Примеры решения задач по теории автоматического управления

Выражение для выходного гармонического сигнала

Примеры решения задач по теории автоматического управления

Логарифмические частотные характеристики

Зависимость Примеры решения задач по теории автоматического управления от Примеры решения задач по теории автоматического управления называется логарифмической амплитудной частотной характеристикой (ЛАЧХ) или ЛАХ. Зависимость Примеры решения задач по теории автоматического управления от Примеры решения задач по теории автоматического управления называется логарифмической фазной частотной характеристикой (ЛФЧХ) или просто ЛФХ. Частоту откладывают либо в логарифмах (в декадах), либо в радианах, но с учетом логарифмического масштаба. Декада соответствует изменению частоты в 10 раз, Примеры решения задач по теории автоматического управления откладывают в децибелах (дБ), Примеры решения задач по теории автоматического управления в градусах.

Для упрощения при построении вручную действительную ЛАЧХ заменяют асимптотической, т.е. ломаной линией из прямых отрезков, имеющих стандартный наклон, кратный ±20дБ/дек.

Частоты пересечения отрезков со а называются частотами сопряжения, они соответствуют корням ПФ. Частоты пересечения ЛАЧХ с осью абсцисс Примеры решения задач по теории автоматического управления называются частотой среза, они соответствуют значению Примеры решения задач по теории автоматического управления или Примеры решения задач по теории автоматического управления (усиление или ослабление сигнала на частоте среза отсутствует). Для удобства построения через значения сопрягающих частот проводят на графике вертикальные линии, а на свободном поле графика — вспомогательные линии со стандартными наклонами Примеры решения задач по теории автоматического управления(-20) дБ/дек.

Частоты сопряжения находят по корням (постоянным времени Примеры решения задач по теории автоматического управления) простых дробей, на которые разбивают ПФ, или типовых звеньев, из которых состоит структурная схема системы регулирования.

Звено первого порядка (один действительный корень)

Примеры решения задач по теории автоматического управления

Звено второго порядка (комплексные сопряженные корни)

Примеры решения задач по теории автоматического управления

где Примеры решения задач по теории автоматического управления — показатель затухания (коэффициент демпфирования), характеризует величину резонанса в звене. При Примеры решения задач по теории автоматического управления = 1 резонанс отсутствует, при Примеры решения задач по теории автоматического управления резонансный выброс Примеры решения задач по теории автоматического управления стремится к бесконечности. При значениях Примеры решения задач по теории автоматического управления < 0,6 асимптотическую ЛАЧХ корректируют на величину выброса Примеры решения задач по теории автоматического управления, определяемого по формуле Примеры решения задач по теории автоматического управления где Примеры решения задач по теории автоматического управления — число одинаковых корней (кратность корня), либо по типовым характеристикам (таблица 2) и графикам.

Примеры решения задач по теории автоматического управления

Левую (начальную) часть ЛАЧХ (низкочастотную или НЧ-асимптоту) или ее продолжение проводят через точку с координатами Примеры решения задач по теории автоматического управления и Примеры решения задач по теории автоматического управления слева направо с наклоном Примеры решения задач по теории автоматического управления(-20 дБ/дек) до первой (наименьшей) частоты сопряжения. Здесь Примеры решения задач по теории автоматического управления это степень астатизма, Примеры решения задач по теории автоматического управления — число нулевых корней знаменателя, Примеры решения задач по теории автоматического управления — числителя; добротность Примеры решения задач по теории автоматического управления — отношение свободных членов полиномов числителя и знаменателя ПФ после удаления нулевых корней.

Двигаясь вправо, на каждой частоте сопряжения продолжают ЛАЧХ с отклонением от предыдущего направления: для корня числителя вверх (+20 дб/дек); для корня знаменателя вниз (-20 дБ/дек). Если кратность корня Примеры решения задач по теории автоматического управления, наклон асимптоты изменяется в Примеры решения задач по теории автоматического управления раз. Общий наклон ЛАЧХ в конце равен Примеры решения задач по теории автоматического управления-(-20 дБ/дек). Выбросы при комплексных корнях откладывают вверх для корней знаменателя, вниз для корней числителя, близкие выбросы суммируются графически.

ЛФЧХ устойчивых систем строят по шаблону, неустойчивых -по вычисляемым точкам. Приближенно считают, что участку ЛАЧХ с наклоном ±20 дБ/дек соответствует фазовый сдвиг около ±90°, а участку с наклоном ±40 дБ/дек сдвиг на ±180°; действительному корню знаменателя соответствует угол наклона ЛФЧХ на сопрягающей частоте Примеры решения задач по теории автоматического управления, комплексной паре Примеры решения задач по теории автоматического управленияПримеры решения задач по теории автоматического управления

У статических систем (степень астатизма Примеры решения задач по теории автоматического управления = 0) НЧ-асимптота представляет собой прямую, параллельную оси частот, и значение Примеры решения задач по теории автоматического управления в децибелах равно расстоянию этой прямой от оси частот Примеры решения задач по теории автоматического управления. У астатических систем находят частоту Примеры решения задач по теории автоматического управления пересечения НЧ-асимптоты или её продолжения с осью частот, откуда Примеры решения задач по теории автоматического управления. Степень астатизма определяется по наклону НЧ-асимптоты относительно оси частот, частоты сопряжения находят по точкам пересечения асимптот — касательных, проведенных к линейным участкам реальной ЛАЧХ.

Пример №20

Построить ЛАЧХ системы, заданной структурной схемой (рисунок 1.31, а). Передаточная функция системы равна

Примеры решения задач по теории автоматического управления
Примеры решения задач по теории автоматического управления

Решение:

Определяем параметры НЧ-асимптоты:

  • порядок астатизма Примеры решения задач по теории автоматического управления = 1 — 0 = 1 (имеется один нулевой корень в знаменателе);
  • добротность Примеры решения задач по теории автоматического управления.

Нули в системе отсутствуют, полюс -5 имеется, отсюда частота сопряжения Примеры решения задач по теории автоматического управления Строим график ЛАЧХ толстой сплошной линией, проводя слева вниз прямую линию с наклоном 1 х(-20 дБ/дек) через точку с координатами (20 дБ, 0) до первой частоты сопряжения (рисунок 1.31, б). Поскольку частота сопряжения соответствует полюсу, отклоняемся от текущего направления вниз на угол -20 дБ/дек, общий наклон ЛАЧХ в конце равен -40 дБ/дек. Корень действительный, поэтому резонанса нет, выбросы не учитываем.

Пример №21

Составить ПФ системы с заданной ЛАЧХ (рисунок 1.31, в), предполагая, что все корни имеют отрицательную действительную часть.

Решение:

На частотах сопряжения Примеры решения задач по теории автоматического управления наблюдается отклонение характеристики от предыдущего направления вверх на +20 дБ/дек, на частотах сопряжения Примеры решения задач по теории автоматического управленияПримеры решения задач по теории автоматического управления — вниз на -20 дБ/дек, поэтому передаточная функция будет иметь вид

Примеры решения задач по теории автоматического управления

Поскольку

Примеры решения задач по теории автоматического управления

и окончательно

Примеры решения задач по теории автоматического управления

Устойчивость непрерывных стационарных систем. Математический и физический признаки устойчивости

Устойчивость — это свойство системы возвращаться в исходное состояние равновесия после снятия воздействия, выведшего систему из этого состояния.

Математический (прямой) признак устойчивости: система устойчива, если все корни её характеристического уравнения имеют отрицательную действительную часть. Другими словами — если все полюса системы левые (лежат слева от мнимой оси комплексной плоскости). Корни полинома числителя передаточной функции (нули) на устойчивость системы не влияют.

Если хотя бы один полюс располагается справа от мнимой оси, система неустойчива. Она находится на апериодической границе устойчивости, если при остальных левых корнях имеет один нулевой корень, и на колебательной (периодической) границе устойчивости, если при остальных левых корнях характеристического уравнения имеет пару чисто мнимых корней (значение со мнимой части таких корней равно частоте незатухающих колебаний системы на границе устойчивости).

Физический признак устойчивости: система устойчива, если свободная составляющая Примеры решения задач по теории автоматического управления переходного процесса (импульсная функция Примеры решения задач по теории автоматического управления) с увеличением времени стремится к нулю, неустойчива, если она стремится к бесконечности, и нейтральна (находится на границе устойчивости), если она стремится к некоторой постоянной величине (амплитуде). Для анализа подходит любая реакция системы, если из нее исключить составляющую, обусловленную вынуждающим сигналом. Нельзя применять для анализа формулу Примеры решения задач по теории автоматического управления, т.к. она может давать нулевой результат и для неустойчивых систем.

Пример №22

Оценить прямым методом устойчивость системы, описываемой дифференциальным уравнением

Примеры решения задач по теории автоматического управления

Решение:

Характеристическое уравнение системы

Примеры решения задач по теории автоматического управления

имеет нулевой корень Примеры решения задач по теории автоматического управления и комплексно-сопряженную пару корней, определяемую из квадратного трехчлена

Примеры решения задач по теории автоматического управления

Система находится на апериодической границе устойчивости, т.к. нулевой корень находится на мнимой оси комплексной плоскости корней, а остальные корни лежат слева от мнимой оси.

Пример №23

Оценить устойчивость системы со свободной составляющей переходного процесса

Примеры решения задач по теории автоматического управления

Решение:

Выражение содержит гармонические составляющие с постоянной амплитудой (не затухающие и не расходящиеся с течением времени), отсюда вывод: система находится на колебательной границе устойчивости. Частота незатухающих колебаний, соответствующая колебательной границе устойчивости, равна 1 рад/с или Примеры решения задач по теории автоматического управления.

Алгебраические критерии устойчивости. Критический коэффициент усиления

Критерий Гурвица: система устойчива, если все коэффициенты ее характеристического уравнения

Примеры решения задач по теории автоматического управления

и все диагональные миноры Примеры решения задач по теории автоматического управления матрицы Гурвица положительны.

Для устойчивости систем первого и второго порядка необходимо и достаточно, чтобы все коэффициенты характеристического уравнения были положительны (были одного знака). Достаточные условия для системы третьего порядка

Примеры решения задач по теории автоматического управления

для системы четвертого порядка

Примеры решения задач по теории автоматического управления

Критерий Гурвица удобно использовать при устном счете для систем не выше четвертого порядка.

Критерий Рауса: система устойчива, если все коэффициенты ее характеристического уравнения и все элементы первого столбца таблицы Рауса положительны. Необходимое условие (положительность всех коэффициентов) совпадает с критерием Гурвица.

Для проверки достаточного условия составляют таблицу, первую и вторую строки которой заполняют попарно коэффициентами характеристического уравнения, начиная со старшего, недостающие коэффициенты заменяют нулем. Элементы последующих строк вычисляют по формулам

Примеры решения задач по теории автоматического управления

где Примеры решения задач по теории автоматического управления — номер строки, Примеры решения задач по теории автоматического управления — номер столбца, Примеры решения задач по теории автоматического управления — вспомогательное число для /-той строки. Таблица содержит Примеры решения задач по теории автоматического управления строку и (Примеры решения задач по теории автоматического управления)/2 с округлением столбец.

Число правых корней характеристического уравнения равно числу перемен знака элементов первого столбца таблицы Рауса. При положительности остальных элементов первого столбца система находится на апериодической границе устойчивости, если равен нулю последний элемент столбца Примеры решения задач по теории автоматического управления, и на периодической границе устойчивости, если равен нулю какой-либо иной элемент первого столбца.

Критическим или предельным (граничным) называется значение параметра (коэффициента), входящего в характеристическое уравнение, при котором система находится на границе устойчивости. Для его определения формулируют условия нахождения системы на границе устойчивости по какому-нибудь критерию.

Контрольная работа по теории автоматического управления ТАУ

Пример №24

Оценить по критерию Гурвица устойчивость системы

Примеры решения задач по теории автоматического управления

Решение:

Характеристическое уравнение

Примеры решения задач по теории автоматического управления

Проверяем необходимое условие — все коэффициенты характеристического уравнения положительны, что можно кратко записать как «условие Примеры решения задач по теории автоматического управления выполняется».

Проверяем достаточное условие по определителю Гурвица

Примеры решения задач по теории автоматического управления

Оба диагональных минора положительны. Так как необходимое и достаточное условия выполняются, система устойчива.

Пример №25

Оценить по Раусу устойчивость системы с характеристическим уравнением

Примеры решения задач по теории автоматического управления

Решение:

Необходимое условие Примеры решения задач по теории автоматического управления выполняется.

Примеры решения задач по теории автоматического управления

Проверяем достаточное условие -составляем таблицу Рауса: число строк равно числу коэффициентов (шесть), число столбцов 6/2 = 3. Заполняем две первые строки попарно коэффициентами с четными Примеры решения задач по теории автоматического управления и нечетными Примеры решения задач по теории автоматического управления индексами. Последний коэффициент Примеры решения задач по теории автоматического управления смещается вниз и влево ходом шахматного коня (три клетки вниз и одна влево), ниже него записываем нули. Вычисляем вспомогательное число и элементы третьей строки: Примеры решения задач по теории автоматического управления; откуда Примеры решения задач по теории автоматического управленияПримеры решения задач по теории автоматического управления, затем элементы остальных строк.

В первом столбце имеется отрицательное число, следовательно, система неустойчива. Число перемен знака в первом столбце равно двум (от 1 к Примеры решения задач по теории автоматического управления и от Примеры решения задач по теории автоматического управления к 6), значит система имеет два правых корня характеристического уравнения, остальные три корня левые.

Пример №26

Найти критическое значение коэффициента усиления Примеры решения задач по теории автоматического управления системы с характеристическим уравнением

Примеры решения задач по теории автоматического управления

Решение:

Формулируем условия нахождения системы на границе устойчивости по критерию Гурвица (он наиболее удобен и нагляден для систем первого-третьего порядка):

  • на апериодической границе Примеры решения задач по теории автоматического управления, откуда Примеры решения задач по теории автоматического управления;
  • на периодической границе Примеры решения задач по теории автоматического управления, откуда следует Примеры решения задач по теории автоматического управления. Учитывая опущенные знаки неравенств, делаем вывод, что система устойчива при значениях коэффициента усиления Примеры решения задач по теории автоматического управления.

Оценить устойчивость по критерию Рауса системы с характеристическим уравнением

Примеры решения задач по теории автоматического управления

Частотные критерии устойчивости. Критерий Михайлова Согласно принципу аргумента, известному в теории комплексной переменной, если среди Примеры решения задач по теории автоматического управления полюсов ПФ системы Примеры решения задач по теории автоматического управления расположены справа от мнимой оси, а остальные Примеры решения задач по теории автоматического управления — слева, то полное изменение аргумента комплексной функции Примеры решения задач по теории автоматического управления равно

Примеры решения задач по теории автоматического управления

Отсюда следует, что линейная система Примеры решения задач по теории автоматического управления-го порядка устойчива, если при изменении частоты со от нуля до плюс бесконечности характеристический вектор системы Примеры решения задач по теории автоматического управления повернется против часовой стрелки на угол Примеры решения задач по теории автоматического управления, не обращаясь нигде в ноль.

Конец вектора Примеры решения задач по теории автоматического управления при изменении частоты чертит годограф Михайлова или характеристическую кривую. На этом основана другая формулировка критерия, чаще используемая в инженерной практике.

Система Примеры решения задач по теории автоматического управления-го порядка устойчива, если кривая Михайлова, начинаясь при Примеры решения задач по теории автоматического управления=0 на действительной положительной полуоси, проходит при изменении частоты Примеры решения задач по теории автоматического управления от нуля до плюс бесконечности последовательно против часовой стрелки Примеры решения задач по теории автоматического управления квадрантов комплексной плоскости.

Система находится на апериодической границе устойчивости, если кривая при Примеры решения задач по теории автоматического управления = 0 начинается в начале координат, и на периодической границе устойчивости, если кривая при Примеры решения задач по теории автоматического управления проходит через начало координат. Частота незатухающих колебаний соответствует периодической границе устойчивости системы.

Кривая Михайлова представляет собой уходящую в бесконечность развертывающуюся спираль, у которой при высоком порядке уравнения практически не видно начальную часть, вследствие этого её допускается чертить не в точном масштабе, а лишь фиксируя последовательность и места пересечения с осями. На графике с кривой Михайлова обязательно должен указываться порядок системы Примеры решения задач по теории автоматического управления, так как при его отсутствии может быть сделан ошибочный вывод.

Действительная часть

Примеры решения задач по теории автоматического управления

содержит только четные степени переменной со и называется четной функцией, мнимая часть

Примеры решения задач по теории автоматического управления

содержит только нечетные степени переменной со и называется нечетной функцией. На их использовании основано следствие или вторая форма критерия Михайлова.

Система устойчива, если четная Примеры решения задач по теории автоматического управления и нечетная Примеры решения задач по теории автоматического управления функции при изменении частоты со от нуля до плюс бесконечности обращаются в нуль поочередно, начиная с нечетной функции, т.е. их корни чередуются. Это вытекает из условия последовательного прохождения квадрантов комплексной плоскости. Для построения графика используется та же таблица частот, что и в первой форме.

Примеры решения задач по теории автоматического управления

Пример №27

Система пятого порядка с кривой Михайлова (рисунок 1.43) неустойчива, т.к. сначала вектор Примеры решения задач по теории автоматического управления повернулся против часовой стрелки на три квадранта (три левых полюса), а затем по часовой стрелке на два квадранта (два правых полюса).

Решение:

Иначе: итоговый поворот равен одному квадранту, т.е. Примеры решения задач по теории автоматического управленияПримеры решения задач по теории автоматического управления, тогда правых корней характеристического полинома (5-1 )/2 = 2.

Пример №28

Найти критическое значение коэффициента усиления системы с

Примеры решения задач по теории автоматического управления

по критерию Михайлова.

Решение:

Заменяя Примеры решения задач по теории автоматического управления получим характеристическую функцию

Примеры решения задач по теории автоматического управления

Условия нахождения САУ на границе устойчивости

Примеры решения задач по теории автоматического управления

Корень второго уравнения Примеры решения задач по теории автоматического управления отбрасываем, т.к. для нахождения системы на колебательной границе устойчивости годограф Михайлова должен пройти через начало координат при Примеры решения задач по теории автоматического управления.

Тогда из второго уравнения определяем частоту

Примеры решения задач по теории автоматического управления

и подставляем ее значение в первое уравнение

Примеры решения задач по теории автоматического управления

Частота, соответствующая колебательной границе устойчивости

Примеры решения задач по теории автоматического управления
Курсовая работа по теории автоматического управления ТАУ

Пример №29

Используя вторую форму (следствие) критерия Михайлова, оценить устойчивость системы

Примеры решения задач по теории автоматического управления

Решение:

В характеристическом уравнении

Примеры решения задач по теории автоматического управления

заменяем Примеры решения задач по теории автоматического управления, снижаем порядок Примеры решения задач по теории автоматического управления и группируем

Примеры решения задач по теории автоматического управления

Здесь Примеры решения задач по теории автоматического управления — это четная (действительная) функция Примеры решения задач по теории автоматического управления, а Примеры решения задач по теории автоматического управления — это нечетная (мнимая) функция Примеры решения задач по теории автоматического управления.

Приравнивая поочередно четную и нечетную функции нулю, находим частоты 1,41 и 1,73, соответствующие пересечению кривой с осями координат, подставляем эти частоты в характеристическую функцию и заполняем таблицу. Строим графики четной и нечетной функций — они поочередно пересекают ось частот, т.е. их корни перемежаются, и общее число пересечений равно Примеры решения задач по теории автоматического управления, следовательно, система устойчива (рисунок 1.44).

Примеры решения задач по теории автоматического управления
Примеры решения задач по теории автоматического управления

Примеры решения задач по теории автоматического управления-разбиение по одному параметру

Областью устойчивости Примеры решения задач по теории автоматического управления(0) называют область в пространстве изменяемых параметров, каждой точке которой соответствуют только левые корни характеристического уравнения. Остальные Примеры решения задач по теории автоматического управления-области отличаются числом правых корней характеристического уравнения и обозначаются соответственно Примеры решения задач по теории автоматического управления(1) — область с одним правым полюсом, Примеры решения задач по теории автоматического управления(2) — с двумя и т.д.

Подставив Примеры решения задач по теории автоматического управления в характеристическое уравнение системы, разрешают его относительно изменяемого параметра, находят четную (действительную) Примеры решения задач по теории автоматического управления и нечетную (мнимую) Примеры решения задач по теории автоматического управления функции. Изменяя частоту Примеры решения задач по теории автоматического управления от 0 до плюс бесконечности, строят кривую Примеры решения задач по теории автоматического управления-разбиения и ее зеркальное отображение относительно действительной оси. Двигаясь по кривой от точки Примеры решения задач по теории автоматического управления до точки Примеры решения задач по теории автоматического управления, наносят штриховку слева от кривой.

Направление штриховки указывает на область с наибольшим числом левых корней. При каждом переходе через кривую навстречу штриховке один корень характеристического уравнения становится правым, в обратном направлении — левым. Выбранную по штриховке область-претендент Примеры решения задач по теории автоматического управления(0) проверяют на устойчивость с помощью любого критерия, подставив значение параметра из этой области в характеристическое уравнение. Поскольку изменяемый параметр является действительной величиной, его допустимые значения лежат на отрезке действительной оси, заключенном внутри области устойчивости Примеры решения задач по теории автоматического управления( 0).

Пример №30

Найти методом Примеры решения задач по теории автоматического управления-разбиения критические значения коэффициента усиления к системы, заданной передаточной функцией

Примеры решения задач по теории автоматического управления

Решение:

Разрешаем характеристическое уравнение системы

Примеры решения задач по теории автоматического управления

относительно исследуемого параметра Примеры решения задач по теории автоматического управления

Примеры решения задач по теории автоматического управления

производим замену Примеры решения задач по теории автоматического управления

Примеры решения задач по теории автоматического управления

снижаем порядок Примеры решения задач по теории автоматического управления и группируем

Примеры решения задач по теории автоматического управления

Определяем частоты пересечения основной кривой с осями:

Примеры решения задач по теории автоматического управления
Примеры решения задач по теории автоматического управления

Строим основную и зеркальную кривые на комплексной плоскости, указывая направление возрастания частоты стрелкой на характеристике (рисунок 1.47). Наносим штриховку, обозначаем области с предполагаемым числом правых полюсов в скобках. Проверяем область-претендент Примеры решения задач по теории автоматического управления(0) на устойчивость по критерию Гурвица при значении Примеры решения задач по теории автоматического управления, выбранном на отрезке внутри области Примеры решения задач по теории автоматического управления(0) между точками 0 и 60

Примеры решения задач по теории автоматического управления
Примеры решения задач по теории автоматического управления

Так как и необходимое, и достаточное условия устойчивости по Гурвицу при Примеры решения задач по теории автоматического управления выполняются, то система будет устойчивой при любых значениях коэффициента усиления в интервале 0 < Примеры решения задач по теории автоматического управления < 60. Критические значения коэффициента равны

Примеры решения задач по теории автоматического управления

Критерий Найквиста. Запасы устойчивости Упрощенная формулировка: система, устойчивая в разомкнутом состоянии или нейтральная, будет устойчивой в замкнутом состоянии, если АФЧХ разомкнутой системы при изменении частоты Примеры решения задач по теории автоматического управления от нуля до плюс бесконечности не охватывает точку с координатами Примеры решения задач по теории автоматического управления. Всегда подразумевается замыкание системы единичной ООС.

Общая формулировка: система после замыкания будет устойчивой, если АФЧХ разомкнутой системы охватывает в положительном направлении (против часовой стрелки) Примеры решения задач по теории автоматического управления раз точку с координатами Примеры решения задач по теории автоматического управления, где Примеры решения задач по теории автоматического управления — число правых полюсов разомкнутой системы.

Оценка запасов устойчивости по АФЧХ. Запасы устойчивости по амплитуде Примеры решения задач по теории автоматического управления в относительных единицах равны расстоянию от критической точки Примеры решения задач по теории автоматического управления до ближайших точек пересечения АФЧХ с отрицательной действительной полуосью. В децибелах запас устойчивости по амплитуде находят как величину, обратную амплитуде Примеры решения задач по теории автоматического управления вектора Примеры решения задач по теории автоматического управления при угле -180° или Примеры решения задач по теории автоматического управления, где Примеры решения задач по теории автоматического управления — расстояние от точки пересечения АФЧХ с отрицательной действительной полуосью до начала координат. Норма Примеры решения задач по теории автоматического управления или 6-12 дБ.

Запас устойчивости по фазе Примеры решения задач по теории автоматического управления равен углу между отрицательной действительной полуосью и лучом, проведенным из начала координат в точку пересечения АФЧХ с дугой единичного радиуса. Запас по фазе Примеры решения задач по теории автоматического управления находится в пределах от 0 до 180°, при проектировании обычно нормой является Примеры решения задач по теории автоматического управления.

Система устойчива в замкнутом состоянии, если обратная АФЧХ Примеры решения задач по теории автоматического управления разомкнутой системы охватывает точку Примеры решения задач по теории автоматического управления.

Логарифмический критерий Найквиста (диаграмма Боде). Обычная формулировка: замкнутая система устойчива, если в момент пересечения ЛФЧХ разомкнутой системы линии -180° её ЛАЧХ отрицательна. Общая формулировка пригодна и для систем, неустойчивых в разомкнутом состоянии: замкнутая система устойчива, если на интервале положительности ЛАЧХ разомкнутой системы сумма переходов ее ЛФЧХ линии -180° равна Примеры решения задач по теории автоматического управления, где Примеры решения задач по теории автоматического управления — число правых корней характеристического уравнения разомкнутой системы.

Оценка запасов устойчивости по ЛЧХ. Запас устойчивости по амплитуде Примеры решения задач по теории автоматического управления равен отклонению ЛАЧХ от нуля на ближайших к частоте среза Примеры решения задач по теории автоматического управления частотах пересечения ЛФЧХ с линией минус 180°. Запас устойчивости по фазе Примеры решения задач по теории автоматического управления равен отклонению ЛФЧХ на частоте среза Примеры решения задач по теории автоматического управления от линии минус 180° к нулю.

Пример №31

Оценить устойчивость системы (рисунок 1.50) по Найквисту.

Примеры решения задач по теории автоматического управления

Решение:

Поскольку необходимо оценить устойчивость имеющейся системы, ее предварительно следует сделать разомкнутой — разорвать контур обратной связи по сумматору. Передаточная функция разомкнутой системы

Примеры решения задач по теории автоматического управления

Блок с коэффициентом усиления 20 стоит вне контура обратной связи и на устойчивость системы не влияет. В разомкнутом состоянии система находится на колебательной границе устойчивости, так как имеет корни Примеры решения задач по теории автоматического управления. Находим комплексный коэффициент передачи разомкнутой системы Примеры решения задач по теории автоматического управления.

Определяем частоты пересечения годографа с осями координат: мнимая часть отсутствует, из уравнения Примеры решения задач по теории автоматического управления видно, что корни, т.е. частоты пересечения с мнимой осью, отсутствуют. Зато уравнение Примеры решения задач по теории автоматического управления дает частоту разрыва характеристики Примеры решения задач по теории автоматического управления. В подобном случае обычно берут еще две частоты (произвольно) — немного меньше частоты разрыва и немного больше, например, возьмём 0,1 и 10.

Примеры решения задач по теории автоматического управления

Замкнутая система также находится на колебательной границе устойчивости (рисунок 1.51), т.к. АФЧХ проходит через точку Примеры решения задач по теории автоматического управления.

Примеры решения задач по теории автоматического управления

Пример №32

Оценить запасы устойчивости по АФЧХ после замыкания единичной ООС системы с

Примеры решения задач по теории автоматического управления

Решение:

Задача не требует построения АФЧХ. По критерию Гурвица следует, что в разомкнутом состоянии система устойчива, нулей нет, поэтому годограф Найквиста проходит два квадранта по часовой стрелке и не пересекает отрицательную действительную полуось. Таким образом, запас по амплитуде максимален Примеры решения задач по теории автоматического управления. Полюса системы действительные -1 и -2, следовательно, резонанс в системе отсутствует и амплитуда вектора Примеры решения задач по теории автоматического управления нигде не превышает величины Примеры решения задач по теории автоматического управления = 1/2, запас устойчивости по фазе равен Примеры решения задач по теории автоматического управления = 180°.

Качество непрерывных стационарных систем. Прямые оценки качества регулирования

Прямые оценки качества определяются по переходной характеристике, т.е. реакции системы на единичный скачок при нулевых начальных условиях (рисунок 1.55).

Время регулирования Примеры решения задач по теории автоматического управления измеряется от начала переходного процесса до момента, после которого характеристика не отклоняется от установившегося значения более, чем на величину допустимой ошибки Примеры решения задач по теории автоматического управления (обычно 5 %, реже 2 % от установившегося значения). Следует указывать, при какой зоне Примеры решения задач по теории автоматического управления получено время регулирования.

Перерегулирование Примеры решения задач по теории автоматического управления — величина максимального относительного заброса переходной характеристики от начальной величины за линию установившегося значения (в относительных единицах или %)

Примеры решения задач по теории автоматического управления
Примеры решения задач по теории автоматического управления

Если начальное и конечное значения характеристики равны нулю или одинаковы (и приняты условно за 0), возможны два способа оценки. При наличии разнополярных значений перерегулирование равно отношению величины второго экстремума к величине первого (рисунок 1.56, а), а если колебание одно (рисунок 1.56, б), то перерегулирование равно отношению величины максимального отклонения к величине входного воздействия (обычно это единица). Зону Примеры решения задач по теории автоматического управления для оценки времени регулирования в первом случае определяют от значения первого максимума, во втором случае — от величины входного воздействия.

Примеры решения задач по теории автоматического управления

Время нарастания Примеры решения задач по теории автоматического управления определяется: для процессов с перерегулированием как время от начала процесса до момента пересечения кривой линии установившегося значения; для любых процессов как время между моментами достижения заданных уровней установившегося значения (например, 10 и 90 %). Поэтому при оценке времени нарастания следует указывать, каким способом оно получено.

Время достижения первого максимума Примеры решения задач по теории автоматического управления (подразумевается, что первый максимум кривой является и наибольшим из всех).

Коэффициент колебательности Примеры решения задач по теории автоматического управления — число забросов переходной характеристики через линию установившегося значения за время регулирования, рекомендуется не более одного-двух забросов.

Степень затухания (демпфирования) — величина относительного уменьшения

Примеры решения задач по теории автоматического управления

амплитуды максимальных забросов выходной величины за один период Примеры решения задач по теории автоматического управления удовлетворительной считают систему с Примеры решения задач по теории автоматического управления.

Установившаяся ошибка Примеры решения задач по теории автоматического управления равна разнице между предписанным и действительным значениями выходной величины после окончания переходного процесса.

Задачи теории автоматического управления ТАУ

Пример №33

Оценить время регулирования и перерегулирование для системы с передаточной функцией Примеры решения задач по теории автоматического управления.

Решение:

Поскольку полюс Примеры решения задач по теории автоматического управления действительный, без мнимой части, колебаний не будет и перерегулирование Примеры решения задач по теории автоматического управления. Переходный процесс описывается зависимостью Примеры решения задач по теории автоматического управления и заканчивается при достижении величины Примеры решения задач по теории автоматического управления, т.е. когда выполняется условие Примеры решения задач по теории автоматического управления. Отсюда

Примеры решения задач по теории автоматического управления

Пример №34

Определить величину перерегулирования и времени регулирования (рисунок 1.57)

Примеры решения задач по теории автоматического управления

Решение:

Перерегулирование Примеры решения задач по теории автоматического управления = (1,5 — 1,0)/1,0 = 0,5 или 50 %. Для определения времени регулирования проводим параллельно линии установившегося значения две прямые на уровне Примеры решения задач по теории автоматического управления. По точке последнего вхождения кривой в зону 2Примеры решения задач по теории автоматического управления получаем Примеры решения задач по теории автоматического управления = 15 с.

Корневые методы оценки качества регулирования Доминирующими называются левые полюса системы, ближайшие к мнимой оси. Степень устойчивости Примеры решения задач по теории автоматического управления (или Примеры решения задач по теории автоматического управления) равна модулю их действительной части (рисунок 1.62). Для оценки времени регулирования Примеры решения задач по теории автоматического управления находят сначала степень устойчивости системы, откуда при ошибке

Примеры решения задач по теории автоматического управления

При заданной зоне ошибки 2 % вместо коэффициента 3 берут приблизительно 4.

Примеры решения задач по теории автоматического управления

Найдя степень колебательности системы

Примеры решения задач по теории автоматического управления

определяют значение перерегулирования

Примеры решения задач по теории автоматического управления

Для расчетаПримеры решения задач по теории автоматического управления выбирают комплексный корень (полюс), у которого отношение мнимой части к действительной максимально. При единственной паре комплексных корней необходимость выбора отпадает. При нескольких парах комплексных корней максимальное значение Примеры решения задач по теории автоматического управления у того корня, который первым встречается лучу, проведенному из начала координат по положительной мнимой полуоси и поворачиваемому против часовой стрелки.

Показатели качества определяют только для устойчивых систем. Если система имеет нуль, равный полюсу, то они взаимно компенсируются и данная составляющая не учитывается (выпадает из переходного процесса).

Пример №35

Оценить показатели качества регулирования системы, имеющей нуль -0,125, полюса Примеры решения задач по теории автоматического управления и коэффициент передачи 1,2.

Решение:

Коэффициент передачи на относительные показатели не влияет. Нуль -0,125, равный полюсу, взаимно с ним компенсируется. Следовательно, доминирующими являются комплексно-сопряженные полюса Примеры решения задач по теории автоматического управления откуда Примеры решения задач по теории автоматического управления, степень колебательности системы

Примеры решения задач по теории автоматического управления

и перерегулирование

Примеры решения задач по теории автоматического управления

или 45,6 %.

Пример №36

Оценить перерегулирование и время регулирования системы

Примеры решения задач по теории автоматического управления

с законом управления Примеры решения задач по теории автоматического управления.

Решение:

Подставляя значение и в соответствии с законом регулирования, получим дифференциальное уравнение

Примеры решения задач по теории автоматического управления

Нули отсутствуют, из характеристического уравнения

Примеры решения задач по теории автоматического управления

находим полюса

Примеры решения задач по теории автоматического управления

Отсюда

Примеры решения задач по теории автоматического управления

а перерегулирование Примеры решения задач по теории автоматического управления или 4,3 %.

Частотные методы оценки качества регулирования Особые частоты: Примеры решения задач по теории автоматического управления — граница интервала частот положительности ВЧХ, Примеры решения задач по теории автоматического управления — частота собственных колебаний, Примеры решения задач по теории автоматического управления — граница интервала существенных частот, вне которого текущее значение функции уже не превышает Примеры решения задач по теории автоматического управления.

Общие принципы оценки качества по вещественной частотной характеристике Примеры решения задач по теории автоматического управления:

  • Примеры решения задач по теории автоматического управления — конечное значение переходной характеристики численно равно начальному значению ВЧХ;
  • Примеры решения задач по теории автоматического управления — начальное значение переходной характеристики численно равно конечному значению ВЧХ;
  • Примеры решения задач по теории автоматического управления — кратность изменения масштаба ВЧХ и переходной характеристики одинакова;
  • Примеры решения задач по теории автоматического управления — расширение полосы рабочих частот ведет к соразмерному повышению быстродействия системы;
  • время регулирования Примеры решения задач по теории автоматического управления
  • перерегулирование а определяется по форме ВЧХ:

а) если ВЧХ монотонно убывает, то перерегулирование Примеры решения задач по теории автоматического управления = 0;

б) если ВЧХ является положительной невозрастающей функцией, то перерегулирование Примеры решения задач по теории автоматического управления < 18 %;

в) если ВЧХ имеет подъем от

Примеры решения задач по теории автоматического управления

г) если ВЧХ имеет отрицательный минимум со значением более 0,1 Примеры решения задач по теории автоматического управления, то с его учетом

Примеры решения задач по теории автоматического управления

д) если ВЧХ терпит разрыв при Примеры решения задач по теории автоматического управления, система совершает незатухающие колебания, Примеры решения задач по теории автоматического управления и показатели качества не определяются.

При оценке качества регулирования по АЧХ обычно вычисляют значение частотного показателя колебательности, равное отношению максимума характеристики к ее начальному значению Примеры решения задач по теории автоматического управления. При Примеры решения задач по теории автоматического управления = 1 переходная характеристика системы не колебательна, при Примеры решения задач по теории автоматического управления система находится на границе устойчивости, наблюдаются незатухающие колебания с частотой Примеры решения задач по теории автоматического управления. Оптимальными считаются значения Примеры решения задач по теории автоматического управления= 1,1..1,5, которым соответствует перерегулирование 10-30 % и запас по фазе 30-50°.

Пример №37

Оценить значение частотного показателя колебательности системы по её АЧХ (рисунок 1.68).

Примеры решения задач по теории автоматического управления

Решение:

Максимальное значение АЧХ равно 1,51, следовательно, показатель колебательности Примеры решения задач по теории автоматического управления = 1,51/1,0 = 1,51, что ещё удовлетворяет минимальному запасу по фазе 30° и перерегулированию 30 %.

Пример №38

Найти значение перерегулирования и времени регулирования системы по заданной АФЧХ (рисунок 1.69)

Примеры решения задач по теории автоматического управления

Решение:

Частота Примеры решения задач по теории автоматического управления = 1,45 рад/с, положительный максимум ВЧХ равен 1,09 при начальном значении Примеры решения задач по теории автоматического управления = 1,0, отрицательный минимум 0,521. Отсюда получаем перерегулирование

Примеры решения задач по теории автоматического управления

и время регулирования не более

Примеры решения задач по теории автоматического управления

Интегральные оценки качества переходных процессов Интегральные показатели качества регулирования дают совокупную оценку быстродействия и колебательности без вычисления их значений. Они характеризуют отклонение реального переходного процесса от заданного идеального.

Интегральная линейная оценка (ИЛО) определяется площадью отклонения реального процесса от идеального ступенчатого. Для обеспечения требуемых динамических свойств САУ необходимо выразить величину Примеры решения задач по теории автоматического управления через коэффициенты передаточной функции системы

Примеры решения задач по теории автоматического управления

где Примеры решения задач по теории автоматического управления — значение передаточной функции в установившемся режиме (при Примеры решения задач по теории автоматического управления), а затем найти оптимальные значения варьируемых параметров, соответствующих минимуму Примеры решения задач по теории автоматического управления.

Пример №39

Для системы с передаточной функцией

Примеры решения задач по теории автоматического управления

линейная интегральная оценка

Примеры решения задач по теории автоматического управления

зависит от соотношения постоянных времени Примеры решения задач по теории автоматического управления и Примеры решения задач по теории автоматического управления. Минимум оценки достигается при их равенстве.

Точность в установившемся режиме

Установившаяся ошибка характеризует точность системы в статическом режиме и равна отклонению действительного значения регулируемой величины от заданного. Система с нулевой установившейся ошибкой Примеры решения задач по теории автоматического управления называется астатической, а при Примеры решения задач по теории автоматического управления и система и ошибка называются статическими.

Ошибка зависит от вида входного воздействия, места его приложения и степени астатизма Примеры решения задач по теории автоматического управления (числа нулевых полюсов) разомкнутой системы. По умолчанию подразумевают вход задания Примеры решения задач по теории автоматического управления и вид воздействия скачок Примеры решения задач по теории автоматического управления при нулевых начальных условиях, в ином случае условия получения ошибки должны оговариваться специально.

Передаточная функция ошибки воспроизведения задания определяется по ПФ разомкнутой системы как Примеры решения задач по теории автоматического управления по передаточной функции замкнутой системы как Примеры решения задач по теории автоматического управления.

Относительная величина установившейся ошибки называется коэффициентом статизма (статизмом) системы по соответствующему каналу:

Примеры решения задач по теории автоматического управления

Здесь Примеры решения задач по теории автоматического управления — коэффициент усиления объекта регулирования. Ошибку регулирования и статизм можно уменьшить, увеличивая общий коэффициент усиления системы Примеры решения задач по теории автоматического управления а по заданной величине статизма (относительной статической ошибки) системы можно выбрать требуемый коэффициент усиления.

Интеграторы с ПФ вида Примеры решения задач по теории автоматического управления добавляемые вне цепи прямой связи сигнала ошибки, увеличивая порядок астатизма разомкнутой системы, позволяют полностью устранить ошибки статическую, по скорости, по ускорению.

Установившийся динамический режим имеет место при возмущенном движении системы с момента затухания свободной составляющей переходного процесса.

Если входное воздействие аппроксимируется полиномом от Примеры решения задач по теории автоматического управления т.е. разлагается в степенной ряд

Примеры решения задач по теории автоматического управления

для расчета вынужденной составляющей ошибки используют метод коэффициентов ошибок. По этому методу передаточную функцию ошибки представляют в виде аналогичного ряда

Примеры решения задач по теории автоматического управления

где Примеры решения задач по теории автоматического управления — коэффициент статической (позиционной) ошибки от Примеры решения задач по теории автоматического управления; Примеры решения задач по теории автоматического управления — коэффициент ошибки по скорости от линейной функции Примеры решения задач по теории автоматического управления, Примеры решения задач по теории автоматического управления — коэффициент ошибки по ускорению от функции Примеры решения задач по теории автоматического управления. Сравнивая две формы записи передаточной функции ошибки, находят значения коэффициентов ошибок (в обоих случаях полиномы нужно начать со свободного члена, а дробь пронормировать по свободному члену знаменателя)

Примеры решения задач по теории автоматического управления

Обычно вычисляют не более трех первых коэффициентов ошибок. Коэффициенты передачи составляющих входного воздействия вычисляются по ПФ разомкнутой системы и называются:

Примеры решения задач по теории автоматического управления

Пример №40

Пусть допустимая статическая ошибка воспроизведения скачка задания не должна превышать значения Примеры решения задач по теории автоматического управления или Примеры решения задач по теории автоматического управления. Для этого необходимо иметь полный коэффициент усиления системы не менее

Примеры решения задач по теории автоматического управления

Пример №41

Определить полную статическую ошибку для системы (рисунок 1.72), полагая, что

Примеры решения задач по теории автоматического управления
Примеры решения задач по теории автоматического управления

Выражение для суммарной ошибки в операторной форме

Примеры решения задач по теории автоматического управления

Поскольку изображения входных сигналов равны Примеры решения задач по теории автоматического управления и Примеры решения задач по теории автоматического управления, полная статическая ошибка будет равна Примеры решения задач по теории автоматического управления. Благодаря интегратору Примеры решения задач по теории автоматического управления, значение ошибки от величины задания Примеры решения задач по теории автоматического управления и возмущения Примеры решения задач по теории автоматического управления не зависит. Система является астатической относительно обоих воздействий.

Пример №42

Определить три первых коэффициента ошибки, вынужденную составляющую ошибки от воздействия

Примеры решения задач по теории автоматического управления

и добротность по скорости для системы, имеющей в разомкнутом состоянии ПФ

Примеры решения задач по теории автоматического управления

Решение:

Находим передаточную функцию по каналу ошибки

Примеры решения задач по теории автоматического управления

Используя нормированную по Примеры решения задач по теории автоматического управления передаточную функцию, найдем три первых коэффициента ошибок

Примеры решения задач по теории автоматического управления

В общем виде вынужденная составляющая ошибки воспроизведения задающего воздействия равна

Примеры решения задач по теории автоматического управления

Для задающего воздействия

Примеры решения задач по теории автоматического управления

находим производные Примеры решения задач по теории автоматического управления и установившуюся динамическую ошибку в любой момент времени

Примеры решения задач по теории автоматического управления

Добротность по скорости вычисляем по ПФ разомкнутой системы

Примеры решения задач по теории автоматического управления

Многомерные системы регулирования. Переход к пространству состояний

При описании системы переменными состояния дифференциальному уравнению Примеры решения задач по теории автоматического управления-го порядка

Примеры решения задач по теории автоматического управления

и соответствует система Примеры решения задач по теории автоматического управления дифференциальных уравнений первого порядка в нормальной форме Коши, разрешенных относительно производной.

Для перехода от ОДУ по методу фазовых переменных за первую переменную состояния принимают выходную величину, за остальные переменные состояния принимают Примеры решения задач по теории автоматического управления-1 производную выходной величины. Обязательно сначала нужно нормировать дифференциальное уравнение, т.е. делить обе части уравнения на коэффициент Примеры решения задач по теории автоматического управления при старшей производной выходной функции (на старший коэффициент многочлена знаменателя передаточной функции).

Если порядок Примеры решения задач по теории автоматического управления многочлена числителя ПФ меньше порядка Примеры решения задач по теории автоматического управления многочлена знаменателя, общий коэффициент ПФ (коэффициент перед правой частью ОДУ) записывается в уравнение для старшей переменной состояния, а коэффициенты многочлена числителя — в обратном порядке в уравнение выхода.

По системе уравнений составляется матрица состояния Примеры решения задач по теории автоматического управления (из коэффициентов при Примеры решения задач по теории автоматического управления) и матрица входа Примеры решения задач по теории автоматического управления (из коэффициентов при входном воздействии Примеры решения задач по теории автоматического управления), по уравнению выхода составляется матрица выхода Примеры решения задач по теории автоматического управления (из коэффициентов при Примеры решения задач по теории автоматического управления)

Примеры решения задач по теории автоматического управления

Сопровождающая матрица Примеры решения задач по теории автоматического управления (матрица Фробениуса) может быть записана прямо по ОДУ (по характеристическому полиному системы)

Примеры решения задач по теории автоматического управления

По уравнениям состояния или матрицам Примеры решения задач по теории автоматического управления указанного вида легко восстановить ПФ или ОДУ, учитывая, что в последней строке сопровождающей матрицы Примеры решения задач по теории автоматического управления записаны с конца, с обратным знаком коэффициенты нормированного характеристического многочлена, а в матрице Примеры решения задач по теории автоматического управления — коэффициенты многочлена числителя передаточной функции в обратном порядке.

Пример №43

Дифференциальное уравнение объекта управления

Примеры решения задач по теории автоматического управления

Выбираем переменные состояния

Примеры решения задач по теории автоматического управления

Решение:

В нормировании нет необходимости. Записываем для каждой из переменных состояния дифференциальное уравнение первого порядка, добавляем общее алгебраическое уравнение выхода

Примеры решения задач по теории автоматического управления

Пример №44

Пусть модель объекта управления имеет вид

Примеры решения задач по теории автоматического управления

тогда после нормирования (деления на 2), считая общий коэффициент перед правой частью уравнения равным единице, получим описание системы в пространстве состояний матрицами

Примеры решения задач по теории автоматического управления

Канонические представления

Стандартные формы описания систем в пространстве состояний с сопровождающей матрицей Примеры решения задач по теории автоматического управления называются каноническими. Это каноническая управляемая форма (с упрощенной матрицей Примеры решения задач по теории автоматического управления) и каноническая наблюдаемая форма (с упрощенной матрицей Примеры решения задач по теории автоматического управления).

При Примеры решения задач по теории автоматического управления, т.е. одинаковых степенях полиномов числителя и знаменателя ПФ, появляется ненулевая матрица обхода Примеры решения задач по теории автоматического управления, которая содержит коэффициенты при входных воздействиях в уравнении выхода. Если матрица Примеры решения задач по теории автоматического управления нулевая, её можно не писать.

Пусть

Примеры решения задач по теории автоматического управления

тогда вычисления для перехода к канонической управляемой форме имеют вид

Примеры решения задач по теории автоматического управления

При Примеры решения задач по теории автоматического управления в матрицу с просто записываются коэффициенты числителя передаточной функции, начиная со свободного члена.

Другой способ перехода к канонической управляемой форме: нужно разделить числитель ПФ на ее знаменатель, получившееся отдельно стоящее слагаемое (частное) поместить в матрицу Примеры решения задач по теории автоматического управления, а коэффициенты числителя полученной рациональной дроби (остатка) записать в матрицу с как обычно, начиная со свободного члена.

Порядок расчета элементов матриц Примеры решения задач по теории автоматического управления и Примеры решения задач по теории автоматического управления для перехода к канонической наблюдаемой форме (в этом случае элементы матрицы Примеры решения задач по теории автоматического управления необходимо вычислять даже при нулевой матрице Примеры решения задач по теории автоматического управления, т.е. при Примеры решения задач по теории автоматического управления).

Пусть

Примеры решения задач по теории автоматического управления

тогда

Примеры решения задач по теории автоматического управления

К стандартным формам относится также описание с диагональной (модальной) матрицей Примеры решения задач по теории автоматического управления, когда по главной диагонали матрицы записывают её собственные значения (корни характеристического уравнения). К описанию с диагональной матрицей Примеры решения задач по теории автоматического управления переходят путем разложения исходного выражения на простые дроби.

Если матрица Примеры решения задач по теории автоматического управления не сопровождающая, а произвольного вида, ее характеристический многочлен нужно вычислять как определитель Примеры решения задач по теории автоматического управления, где Примеры решения задач по теории автоматического управления — комплексная переменная Лапласа, 1 — единичная матрица.

Корни характеристического уравнения Примеры решения задач по теории автоматического управления=0 являются собственными значениями матрицы Примеры решения задач по теории автоматического управления. Матрицы подобны, если имеют одинаковые собственные значения (характеристические многочлены и их корни).

Многомерная система устойчива, если все собственные значения матрицы состояний Примеры решения задач по теории автоматического управления имеют отрицательную действительную часть, иначе — все корни характеристического полинома являются левыми. Вычислив характеристическое уравнение системы Примеры решения задач по теории автоматического управления, можно оценить ее устойчивость любым из известных способов.

Пример №45

Передаточная функция объекта

Примеры решения задач по теории автоматического управления

Каноническое управляемое представление (нормирование по Примеры решения задач по теории автоматического управления не требуется, матрица Примеры решения задач по теории автоматического управления имеет стандартный вид, всегда одинаковый)

Примеры решения задач по теории автоматического управления

Пример №46

По уравнению

Примеры решения задач по теории автоматического управления

составим каноническую наблюдаемую форму. Нормирование по старшему коэффициенту знаменателя при Примеры решения задач по теории автоматического управления не требуется, так как он уже равен единице, многочлен числителя ПФ дополняем коэффициентами до той же степени, что и многочлен знаменателя

Примеры решения задач по теории автоматического управления

матрица Примеры решения задач по теории автоматического управления нулевая, поскольку Примеры решения задач по теории автоматического управления, и окончательно (матрица с имеет стандартный вид, всегда одинаковый)

Примеры решения задач по теории автоматического управления

Пример №47

Перейти к переменным состояния разложением на простые дроби заданной передаточной функции

Примеры решения задач по теории автоматического управления

Решение:

Коэффициенты на главной диагонали матрицы Примеры решения задач по теории автоматического управления равны её собственным значениям (полюсам системы) Примеры решения задач по теории автоматического управления; структурная схема соответствует рисунку 2.1. Матрицы Примеры решения задач по теории автоматического управления и Примеры решения задач по теории автоматического управления включены последовательно, поэтому, если вычеты 0,5 и 0,5 вписаны в матрицу Примеры решения задач по теории автоматического управления (как показано), то в матрицу Примеры решения задач по теории автоматического управления записываются единицы, и наоборот.

Примеры решения задач по теории автоматического управления

Пример №48

Оценить устойчивость системы, проверить подобие матрицы Примеры решения задач по теории автоматического управления и матрицы Примеры решения задач по теории автоматического управленияПримеры решения задач по теории автоматического управления

Система

Примеры решения задач по теории автоматического управления

матрица

Примеры решения задач по теории автоматического управления

Решение:

Характеристическая матрица

Примеры решения задач по теории автоматического управления

Характеристический многочлен (определитель характеристической матрицы)

Примеры решения задач по теории автоматического управления

По критерию Гурвица система устойчива, т.к. все коэффициенты характеристического многочлена положительны.

Характеристический многочлен матрицы

Примеры решения задач по теории автоматического управления

равен

Примеры решения задач по теории автоматического управления

Матрицы Примеры решения задач по теории автоматического управления и Примеры решения задач по теории автоматического управления подобны, поскольку равны их характеристические многочлены.

Описание по структурной схеме

На структурной схеме переменные состояния могут быть назначены разным образом, поэтому и описания системы в пространстве состояний будут отличаться. Все матрицы имеют нестандартный вид. Однако переменная всегда назначается на выходе блока с Примеры решения задач по теории автоматического управления в знаменателе, а ОДУ первого порядка для каждого такого блока записывают в зависимости от вида знаменателя:

а) звено с нулевым корнем в знаменателе (рисунок 2.3, а)

Примеры решения задач по теории автоматического управления

б) звено с действительным корнем, две формы (рисунок 2.3, б)

Примеры решения задач по теории автоматического управления

Правая часть после нормирования равна произведению входа на числитель минус произведение выхода на коэффициент знаменателя.

Примеры решения задач по теории автоматического управления

Звено с комплексными сопряженными корнями (рисунок 2.3, в), не разлагается на два простых, поэтому вводят условно переменную состояния с промежуточным индексом и составляют два уравнения

Примеры решения задач по теории автоматического управления

Эта запись соответствует переходу от дифференциального уравнения к канонической форме наблюдаемости с нормированием по старшему коэффициенту знаменателя

Примеры решения задач по теории автоматического управления

Любой блок порядка Примеры решения задач по теории автоматического управления>1 может быть описан с использованием канонической наблюдаемой формы без его разложения на простые звенья. В особенности это важно, если блок имеет нули, т.е. порядок многочлена числителя его передаточной функции не ниже единицы.

Примеры решения задач по теории автоматического управления

Умножая матрицу Примеры решения задач по теории автоматического управления на вектор Примеры решения задач по теории автоматического управления и вектор Примеры решения задач по теории автоматического управления на вход Примеры решения задач по теории автоматического управления, получаем систему уравнений, которую затем совмещаем с уравнениями оставшейся части структурной схемы.

Поскольку в пространстве состояний не могут быть отдельно описаны дифференцирующие и форсирующие звенья с Примеры решения задач по теории автоматического управления, то, получив в правой части уравнения дополнительную производную с индексом, меньшим текущего номера уравнения, ее пробуют выразить через значение, полученное ранее, в предыдущих дифференциальных уравнениях. Обычно это имеет место при обратных связях через Примеры решения задач по теории автоматического управления.

Пример №49

Описать систему (рисунок 2.4, а)

Примеры решения задач по теории автоматического управления

Решение:

Сначала рассматриваем сложный блок с переменной s в числителе, учитывая, что вектор с для него составлен единственной единицей и в вычислениях не нуждается, а переменная состояния на выходе блока имеет индекс 2:

Примеры решения задач по теории автоматического управления

Затем описываем всю систему, включая в нее этот блок:

Примеры решения задач по теории автоматического управления

и окончательно

Примеры решения задач по теории автоматического управления

Пример №50

Составляя уравнения состояния для случая, когда в цепи обратной связи есть звено дифференцирования с Примеры решения задач по теории автоматического управления (рисунок 2.4, б) учитываем, что умножение на s в операторной области соответствует взятию производной во временной области.

Примеры решения задач по теории автоматического управления

Решение:

Поскольку в правой части уравнений производных быть не должно, вместо производной подставляется ее значение, вычисленное ранее. Окончательно

Примеры решения задач по теории автоматического управления

Синтез структурной схемы

Независимо от реальной конструкции, система в пространстве состояний может быть представлена набором интеграторов (звеньев Примеры решения задач по теории автоматического управления, осуществляющих операцию интегрирования входной величины по времени), сумматоров и блоков, воспроизводящих коэффициенты усиления в собственных и перекрестных связях.

Пример №51

Перейдем от матриц Примеры решения задач по теории автоматического управления

Примеры решения задач по теории автоматического управления

к структурной схеме (рисунок 2.11), для чего выбираем число звеньев (равно порядку матрицы Примеры решения задач по теории автоматического управления), определяем корни знаменателей ПФ по диагональным элементам матрицы Примеры решения задач по теории автоматического управления (Примеры решения задач по теории автоматического управления = -1 у блока с переменной Примеры решения задач по теории автоматического управления на выходе и Примеры решения задач по теории автоматического управления = -3 у блока с переменной Примеры решения задач по теории автоматического управления), находим коэффициенты прямых связей — числители ПФ блоков между Примеры решения задач по теории автоматического управления и Примеры решения задач по теории автоматического управления, между Примеры решения задач по теории автоматического управления и Примеры решения задач по теории автоматического управления(оба числителя равны 1). В схеме имеются две отрицательные обратные связи: единичная ООС от Примеры решения задач по теории автоматического управления к Примеры решения задач по теории автоматического управления и с коэффициентом 3 от Примеры решения задач по теории автоматического управления к Примеры решения задач по теории автоматического управления. На входе системы находится блок с коэффициентом 2, выход Примеры решения задач по теории автоматического управления связан с системой через коэффициенты 1 матрицы Примеры решения задач по теории автоматического управления.

Примеры решения задач по теории автоматического управления

Пример №52

Построить структурную схему объекта, заданного системой дифференциальных уравнений

Примеры решения задач по теории автоматического управления

Решение:

Порядок объекта равен двум, используем два интегратора с сумматором на входе каждого. Назначаем переменные на выходах интеграторов, двигаясь от выхода схемы ко входу, значения всех производных формируются на входе интеграторов. Проводим связи на входы сумматоров в соответствии с видом уравнений. Например, производная Примеры решения задач по теории автоматического управления образуется на входе последнего интегратора суммированием выходной переменной Примеры решения задач по теории автоматического управления (с минусом) и переменной Примеры решения задач по теории автоматического управления, взятой с коэффициентом 2 (смотри первую строку системы дифференциальных уравнений). Сумматор на выходе необходим для образования выходной величины из переменных состояния, взятых с соответствующими коэффициентами Примеры решения задач по теории автоматического управления (рисунок 2.12).

Примеры решения задач по теории автоматического управления

Пример №53

Построить структурную схему объекта по дифференциальному уравнению

Примеры решения задач по теории автоматического управления

Решение:

Поскольку порядок системы равен трем, используем три интегратора Примеры решения задач по теории автоматического управления, включив их последовательно и установив сумматор на входе первого интегратора слева. К инвертирующему входу этого сумматора подключаем через согласующие сумматоры блоки с коэффициентами (по порядку): Примеры решения задач по теории автоматического управления — с выхода первого интегратора, Примеры решения задач по теории автоматического управления — с выхода второго интегратора, Примеры решения задач по теории автоматического управления — с выхода третьего интегратора.

Если в правой части дифференциального уравнения нет производных, блок с коэффициентом Примеры решения задач по теории автоматического управления помещаем на входе главного сумматора (рисунок 2.13), в ином случае необходим еще один сумматор на выходе схемы, к которому через блоки с коэффициентами Примеры решения задач по теории автоматического управления подключают выходы интеграторов.

Примеры решения задач по теории автоматического управления

Основные матричные функции

Примеры решения задач по теории автоматического управления — характеристическая матрица, аналог характеристического полинома одномерной системы Примеры решения задач по теории автоматического управления.

Примеры решения задач по теории автоматического управления — системная матрица (резольвента), называемая также передаточной матрицей или матрицей передаточных функций (МПФ) для переменных состояния, аналог системной функции Примеры решения задач по теории автоматического управления.

Примеры решения задач по теории автоматического управления — реальная МПФ для назначенных входов и выходов (передаточная матрица выходов), совпадает по виду с Примеры решения задач по теории автоматического управления только в частном случае.

Пример №54

Система задана в пространстве состояний матрицами

Примеры решения задач по теории автоматического управления

Характеристическая матрица

Примеры решения задач по теории автоматического управления

Характеристический полином (определитель характеристической матрицы)

Примеры решения задач по теории автоматического управления

Присоединенная матрица

Примеры решения задач по теории автоматического управления

Решение:

Алгоритм вычисления присоединенной матрицы: каждый элемент исходной матрицы Примеры решения задач по теории автоматического управления заменяют его алгебраическим дополнением и полученная матрица транспонируется (приложение В). Резольвента

Примеры решения задач по теории автоматического управления

матрица передаточных функций выходов

Примеры решения задач по теории автоматического управления

Решение уравнения движения

Решение дифференциального уравнения для переменных состояния Примеры решения задач по теории автоматического управления, т.е. изменение вектора состояния при известном векторе управления и начальных условиях (внутри системы), в общем виде

Примеры решения задач по теории автоматического управления

Реакция на выходе системы вычисляется с учетом матрицы Примеры решения задач по теории автоматического управления

Примеры решения задач по теории автоматического управления
Примеры решения задач по теории автоматического управления

Если система задана в наблюдаемой форме с упрощенной матрицей с, вместо вектора начальных значений переменных состояния Примеры решения задач по теории автоматического управления может непосредственно использоваться вектор Примеры решения задач по теории автоматического управления начальных значений рассогласования, скорости, ускорения и т. п. на выходе системы. В ином случае необходимо преобразование Примеры решения задач по теории автоматического управления в Примеры решения задач по теории автоматического управления с учетом коэффициентов матрицы Примеры решения задач по теории автоматического управления.

Матрицы, элементами которых являются весовые Примеры решения задач по теории автоматического управления или переходные Примеры решения задач по теории автоматического управления функции объекта, называются соответственно весовой (импульсной) Примеры решения задач по теории автоматического управления и переходной Примеры решения задач по теории автоматического управления матрицами. Их изображения определяют обычным способом.

Примеры решения задач по теории автоматического управления

Пример №55

Найти при Примеры решения задач по теории автоматического управления и начальных условиях Примеры решения задач по теории автоматического управленияПримеры решения задач по теории автоматического управления уравнения движения системы

Примеры решения задач по теории автоматического управления

Решение:

Система задана в наблюдаемой форме с матрицей Примеры решения задач по теории автоматического управления = [1 0], поэтому вектор начальных значений переменных формируем по выходу

Примеры решения задач по теории автоматического управления

Характеристическая матрица

Примеры решения задач по теории автоматического управления

Характеристический полином (определитель характеристической матрицы)

Примеры решения задач по теории автоматического управления

Резольвента

Примеры решения задач по теории автоматического управления

где присоединенная матрица

Примеры решения задач по теории автоматического управления

Заменяем по таблице соответствия изображения на оригиналы

Примеры решения задач по теории автоматического управления

Пример №56

Найти изображение реакции на Примеры решения задач по теории автоматического управления системы

Примеры решения задач по теории автоматического управления

Решение:

Изображение входного воздействия

Примеры решения задач по теории автоматического управления
Примеры решения задач по теории автоматического управления

Вычисление фундаментальной матрицы

Поскольку

Примеры решения задач по теории автоматического управления

то фундаментальную матрицу Примеры решения задач по теории автоматического управления определяют как матричную экспоненту от Примеры решения задач по теории автоматического управления тремя способами:

а) разложением в бесконечный Примеры решения задач по теории автоматического управления или конечный ряд

Примеры решения задач по теории автоматического управления

где Примеры решения задач по теории автоматического управления — порядок системы.

Точность расчета снижается из-за конечного числа членов ряда. Способ полезен в случаях, когда невозможно найти корни характеристического уравнения системы, либо производится расчет для конкретного момента времени Примеры решения задач по теории автоматического управления.

б) по формуле Сильвестра

Примеры решения задач по теории автоматического управления

где Примеры решения задач по теории автоматического управления — собственные значения матрицы Примеры решения задач по теории автоматического управления (корни характеристического уравнения системы), или в развернутом виде

Примеры решения задач по теории автоматического управления

Здесь

Примеры решения задач по теории автоматического управления

Особенности метода — коэффициенты сразу получаются в матричном виде, но обязательно нужно знать корни характеристического уравнения. Приведенная формула пригодна для простых действительных корней характеристического уравнения, для кратных корней используется более сложная формула.

в) Наконец, Примеры решения задач по теории автоматического управления вычисляется и как обратное преобразование Лапласа от системной матрицы Примеры решения задач по теории автоматического управления или Примеры решения задач по теории автоматического управления.

Здесь также нужно обязательно знать корни, требуется многократное поэлементное преобразование, но зато способ пригоден для любых корней (комплексных, кратных, простых).

Пример №57

Определим матричную экспоненту для системы с Примеры решения задач по теории автоматического управления. Поскольку уже при Примеры решения задач по теории автоматического управления получена нулевая матрица

Примеры решения задач по теории автоматического управления

расчет далее можно не продолжать и результат записывается в виде

Примеры решения задач по теории автоматического управления

Пример №58

Определить Примеры решения задач по теории автоматического управления методом Сильвестра для системы

Примеры решения задач по теории автоматического управления

Решение:

Вычисляем характеристический полином, находим его корни

Примеры решения задач по теории автоматического управления

Вычисляем матрицы коэффициентов при собственных модах системы

Примеры решения задач по теории автоматического управления

Пример №59

Определить с помощью обратного преобразования Лапласа фундаментальную матрицу системы

Примеры решения задач по теории автоматического управления

Решение:

Находим корни характеристического полинома и адъюнкту -1

Примеры решения задач по теории автоматического управления

Общий вид разложения на простые дроби

Примеры решения задач по теории автоматического управления

Находим коэффициенты числителей простых дробей:

Примеры решения задач по теории автоматического управления

откуда получаем вид системной и фундаментальной матриц

Примеры решения задач по теории автоматического управления

Найдем, например, реакцию на начальные условия Примеры решения задач по теории автоматического управления Примеры решения задач по теории автоматического управления данной системы по известной Примеры решения задач по теории автоматического управления, если Примеры решения задач по теории автоматического управления.

Примеры решения задач по теории автоматического управления

Управляемость и наблюдаемость систем

Для управляемости системы необходимо и достаточно, чтобы матрица управляемости вида

Примеры решения задач по теории автоматического управления

имела ранг, равный Примеры решения задач по теории автоматического управления. При управляемости системы говорят также, что пара Примеры решения задач по теории автоматического управления управляема.

Ранг матрицы Примеры решения задач по теории автоматического управления равен порядку её наибольшего ненулевого минора. Матрица Примеры решения задач по теории автоматического управления составляется присоединением справа к матрице Примеры решения задач по теории автоматического управления произведения матриц Примеры решения задач по теории автоматического управления, затем произведения Примеры решения задач по теории автоматического управления и т.д. Размерность матрицы Примеры решения задач по теории автоматического управления равна Примеры решения задач по теории автоматического управления, где Примеры решения задач по теории автоматического управления — число входов. Если ранг матрицы Примеры решения задач по теории автоматического управления (обозначим его Примеры решения задач по теории автоматического управления) не равен единице, то вычисление матрицы Примеры решения задач по теории автоматического управления можно закончить досрочно по формуле

Примеры решения задач по теории автоматического управления

Система полностью управляема при Примеры решения задач по теории автоматического управления, полностью неуправляема при Примеры решения задач по теории автоматического управления = 0, частично управляема при Примеры решения задач по теории автоматического управления, порядок управляемости равен Примеры решения задач по теории автоматического управления.

Для наблюдаемости системы необходимо и достаточно, чтобы матрица наблюдаемости

Примеры решения задач по теории автоматического управления

имела ранг, равный порядку системы Примеры решения задач по теории автоматического управления. Символ Примеры решения задач по теории автоматического управления означает транспонирование или перевод вектора-строки в вектор-столбец. Говорят иначе, что пара Примеры решения задач по теории автоматического управления наблюдаема.

Система полностью наблюдаема при Примеры решения задач по теории автоматического управления, полностью не-наблюдаема при Примеры решения задач по теории автоматического управления = 0, частично наблюдаема при Примеры решения задач по теории автоматического управления, порядок наблюдаемости равен Примеры решения задач по теории автоматического управления.

Если ранг матрицы Примеры решения задач по теории автоматического управления (обозначим его Примеры решения задач по теории автоматического управления) больше единицы, то число вычислений можно сократить, пользуясь формулой

Примеры решения задач по теории автоматического управления

Существует и иная форма составления матрицы наблюдаемости — по вертикали без транспонирования

Примеры решения задач по теории автоматического управления

Если сокращены одинаковые нули и полюса, передаточная функция Примеры решения задач по теории автоматического управления и матрица передаточных функций

Примеры решения задач по теории автоматического управления

описывают только управляемую и наблюдаемую часть системы. Наличие сокращаемых пар нуль-полюс приводит к неуправляемости (ненаблюдаемости) системы. При диагональной матрице Примеры решения задач по теории автоматического управления уже можно говорить о неполной управляемости или наблюдаемости системы, если соответственно матрица Примеры решения задач по теории автоматического управления или Примеры решения задач по теории автоматического управления содержит нулевые элементы.

Пример №60

Оценить управляемость системы (достаточно иметь пару Примеры решения задач по теории автоматического управления и Примеры решения задач по теории автоматического управления).

Система

Примеры решения задач по теории автоматического управления

Решение:

Находим

Примеры решения задач по теории автоматического управления

Определитель матрицы управляемости

Примеры решения задач по теории автоматического управления

следовательно, ранг матрицы равен двум, что равно порядку системы Примеры решения задач по теории автоматического управления, система полностью управляема.

Задачу можно было не решать: числитель ПФ содержит только 1 (это видно из матрицы Примеры решения задач по теории автоматического управления), следовательно, сокращаемые пары нуль-полюс отсутствуют и система полностью управляема.

Система

Примеры решения задач по теории автоматического управления

Пример №61

Оценить управляемость системы.

Матрица Примеры решения задач по теории автоматического управления диагональная (в каждой строке одна переменная с возрастающим индексом). Уже ясно, что система неуправляема по Примеры решения задач по теории автоматического управления (по полюсу +1), поскольку в первом уравнении нет Примеры решения задач по теории автоматического управления. Проверим вывод.

Примеры решения задач по теории автоматического управления

то

Примеры решения задач по теории автоматического управления

Система частично управляема, порядок управляемости равен двум.

Пример №62

Оценить наблюдаемость системы

Примеры решения задач по теории автоматического управления

С учетом того, что Примеры решения задач по теории автоматического управления делаем вывод, что Примеры решения задач по теории автоматического управления = 1 — система частично наблюдаема, порядок наблюдаемости равен 1.

Пример №63

Проверить управляемость системы

Примеры решения задач по теории автоматического управления

Передаточная функция

Примеры решения задач по теории автоматического управления

содержит сокращаемую пару (диполь) нуль -1/полюс -1, что ведет либо к неуправляемости, либо к ненаблюдаемости системы. От чего это будет зависеть? Составим описание системы в канонической управляемой форме и проверим управляемость

Примеры решения задач по теории автоматического управления

Система в таком представлении полностью управляема (но не вполне наблюдаема). Составим описание системы в канонической наблюдаемой форме и снова проверим управляемость

Примеры решения задач по теории автоматического управления

А теперь система управляема частично. Таким образом, если в ПФ системы обнаруживается сокращаемая пара, неуправляемость или ненаблюдаемость зависит от того, какое представление выбирается для перехода в пространство состояний. Если же в ПФ сокращаемые пары отсутствуют, система полностью управляема и наблюдаема.

Наблюдатели состояния

Если не все переменные состояния объекта регулирования измеряются, либо имеют место существенные искажения (помехи), используют специальное оценивающее устройство — наблюдатель.

Наблюдатель в виде параллельного фильтра представляет собой модель объекта регулирования на интеграторах в каноническом управляемом представлении. Его вход подключается параллельно входу объекта регулирования, а с выходов интеграторов снимают идеальные значения переменных состояния объекта (оценки), которые обозначают значком «каре» А над символом переменной. Разница значений выходов объекта и наблюдателя называется невязкой (обозначается значком «тильда» ~ над символом сигнала), при совпадении модели с оригиналом невязка стремится к нулю.

Если объект управления неустойчив, либо требуется ускорить переходный процесс в наблюдателе, наблюдатель строят в виде фильтра Калмана. В нём сигнал невязки через компенсирующее звено или корректирующие обратные связи подается на вход наблюдателя вместе с обычным входным сигналом, и, если невязка не равна нулю, переходный процесс принудительно демпфируется.

Пример №64

Построить наблюдатель в виде параллельного фильтра к объекту с передаточной функцией

Примеры решения задач по теории автоматического управления

Решение:

Модель объекта (описание наблюдателя) соответствует канонической форме управляемости

Примеры решения задач по теории автоматического управления

Этому описанию отвечает структурная схема (рисунок 2.22)

Примеры решения задач по теории автоматического управления

Пример №65

Построим наблюдатель в виде фильтра Калмана для объекта, заданного системой дифференциальных уравнений

Примеры решения задач по теории автоматического управления

обеспечив показатели качества переходного процесса ошибки наблюдателя

Примеры решения задач по теории автоматического управления

Решение:

По матрицам коэффициентов объекта регулирования определяем его передаточную функцию (объект неустойчив)

Примеры решения задач по теории автоматического управления

В фильтре Калмана второго порядка с дифференциальным уравнением

Примеры решения задач по теории автоматического управления

компенсирующая добавка образуется обратными связями с коэффициентами Примеры решения задач по теории автоматического управления (рисунок 2.23).

Примеры решения задач по теории автоматического управления

В соответствии с матрицей

Примеры решения задач по теории автоматического управления

характеристический полином наблюдателя имеет вид

Примеры решения задач по теории автоматического управления

или

Примеры решения задач по теории автоматического управления

Исходя из требований к качеству переходного процесса наблюдателя модуль действительной части Примеры решения задач по теории автоматического управления корней его характеристического уравнения при Примеры решения задач по теории автоматического управления должен быть не менее, чем Примеры решения задач по теории автоматического управления, тогда мнимая часть равна

Примеры решения задач по теории автоматического управления

По двум выбранным корням Примеры решения задач по теории автоматического управления определяем вид желаемого устойчивого характеристического полинома

Примеры решения задач по теории автоматического управления

Из равенства

Примеры решения задач по теории автоматического управления

находим неизвестные коэффициенты корректирующих обратных связей

Примеры решения задач по теории автоматического управления

Пример №66

Рассчитать параметры наблюдателя в виде фильтра Калмана (рисунок 2.24) с компенсирующим звеном, имеющим передаточную функцию

Примеры решения задач по теории автоматического управления

при тех же требованиях к качеству переходного процесса наблюдателя и параметрах ПФ модели объекта регулирования Примеры решения задач по теории автоматического управления.

Примеры решения задач по теории автоматического управления

Решение:

Передаточная функция модели объекта регулирования равна

Примеры решения задач по теории автоматического управления

а характеристическое уравнение наблюдателя имеет вид

Примеры решения задач по теории автоматического управления

откуда, приравняв числитель нулю и нормируя, получаем

Примеры решения задач по теории автоматического управления

Желаемый характеристический полином третьего порядка формируем из корней с одинаковой действительной частью Примеры решения задач по теории автоматического управления и -3, он равен

Примеры решения задач по теории автоматического управления

Приравнивая Примеры решения задач по теории автоматического управления находим неизвестные коэффициенты Примеры решения задач по теории автоматического управления

Проектирование модального регулятора

Модальным называется регулятор, параметры которого выбраны по желаемому характеристическому многочлену замкнутой системы управления. Полагаем, что все переменные состояния объекта управления доступны для измерения, и рассмотрим случай, когда используется П-регулятор. Модель объекта управления

Примеры решения задач по теории автоматического управления

Закон управления для объекта второго порядка имеет вид

Примеры решения задач по теории автоматического управления

где Примеры решения задач по теории автоматического управления — коэффициент усиления П-регулятора, Примеры решения задач по теории автоматического управления — задание, Примеры решения задач по теории автоматического управления — коэффициенты обратных связей регулятора по переменным состояния.

Подставив значение Примеры решения задач по теории автоматического управления в уравнение состояния, получим систему уравнений, которая описывает замкнутую систему управления

Примеры решения задач по теории автоматического управления

и характеристический полином замкнутой системы

Примеры решения задач по теории автоматического управления

Неизвестные коэффициенты Примеры решения задач по теории автоматического управления обратных связей по переменным состояния объекта можно определить из равенства полиному желаемого вида Примеры решения задач по теории автоматического управления. Последний либо выбирают на основе заданных значений перерегулирования Примеры решения задач по теории автоматического управления % и времени регулирования Примеры решения задач по теории автоматического управления из типовых (приложение Г), либо рассчитывают самостоятельно. Например, параметры качества регулирования Примеры решения задач по теории автоматического управления с при отсутствии нулей обеспечит нормированный полином Баттерворта второго порядка

Примеры решения задач по теории автоматического управления

Приравняв коэффициенты полиномов при одинаковых степенях Примеры решения задач по теории автоматического управления, получим

Примеры решения задач по теории автоматического управления

Расчет существенно упрощается, если объект представлен в канонической форме управляемости с Примеры решения задач по теории автоматического управления.

Коэффициент усиления Примеры решения задач по теории автоматического управления обычно находят из условия нулевой статической ошибки: либо по коэффициентам передаточной функции

Примеры решения задач по теории автоматического управления

откуда

Примеры решения задач по теории автоматического управления

либо из инверсии матричной передаточной функции Примеры решения задач по теории автоматического управления при Примеры решения задач по теории автоматического управления.

Если для измерения доступна только одна величина на выходе Примеры решения задач по теории автоматического управления, для создания обратных связей по переменным состояния устанавливают наблюдатель, либо в цепи главной обратной связи системы используют ПД-регулятор (форсирующее звено) с эквивалентной передаточной функцией Примеры решения задач по теории автоматического управления.

Пример №67

Рассчитать параметры модального регулятора для объекта

Примеры решения задач по теории автоматического управления

при требованиях к качеству регулирования

Примеры решения задач по теории автоматического управления

Решение:

Регулятор состоит из двух частей: обеспечивающей статические характеристики системы Примеры решения задач по теории автоматического управленияи обеспечивающей динамические характеристики Примеры решения задач по теории автоматического управления (рисунок 2.25), для измерения доступна только выходная переменная у объекта.

Примеры решения задач по теории автоматического управления

Выберем интегратор (И-регулятор) в качестве Примеры решения задач по теории автоматического управления чтобы обеспечить нулевую статическую ошибку Примеры решения задач по теории автоматического управления пусть составляющая регулятора, обеспечивающая заданные динамические свойства равна

Примеры решения задач по теории автоматического управления

здесь Примеры решения задач по теории автоматического управления — неизвестные коэффициенты, Примеры решения задач по теории автоматического управления — коэффициент передачи объекта регулирования.

Тогда характеристическое уравнение замкнутой системы равно

Примеры решения задач по теории автоматического управления

Выберем распределение корней, обеспечивающее заданное качество процессов, например,

Примеры решения задач по теории автоматического управления

(все действительные полюса обеспечат нулевое перерегулирование и время регулирования не более 3/2 = 1,5 с). Сформируем желаемое характеристическое уравнение третьего порядка

Примеры решения задач по теории автоматического управления

Приравнивая коэффициенты при соответствующих степенях Примеры решения задач по теории автоматического управления, получим расчетные соотношения

Примеры решения задач по теории автоматического управления

Отсюда находим параметры регулятора

Примеры решения задач по теории автоматического управления

Пример №68

ПФ объекта регулирования после нормирования имеет вид

Примеры решения задач по теории автоматического управления

заданные показатели качества: время регулирования 6 с, перерегулирование 0,02, выбрать параметры модального регулятора.

Решение:

Поскольку объект представлен передаточной функцией и не все переменные состояния измеряются, формируем наблюдатель состояния с параметрами

Примеры решения задач по теории автоматического управления

Исходя из требований к процессу регулирования замкнутой системы, выбираем корни Примеры решения задач по теории автоматического управления и определяем эталонный (желаемый) характеристический полином с коэффициентами Примеры решения задач по теории автоматического управления Характеристический полином третьей степени содержит один действительный корень и два комплексных сопряженных, по последним, полагая их доминирующими, и будем формировать показатели качества регулирования.

При заданном времени регулирования Примеры решения задач по теории автоматического управления с степень устойчивости для ошибки Примеры решения задач по теории автоматического управления равна Примеры решения задач по теории автоматического управления = 3/6 = 0,5, отсюда действительная часть комплексного корня будет равна -0,5. Действительный корень принимаем в 10 раз большим, т.е. -5, чтобы исключить его влияние на переходный процесс. По заданной величине перерегулирования Примеры решения задач по теории автоматического управления = 0,02 вычисляем степень колебательности Примеры решения задач по теории автоматического управленияПримеры решения задач по теории автоматического управления, после чего можно вычислить мнимую часть комплексного корня

Примеры решения задач по теории автоматического управления

По значениям корней -5 и Примеры решения задач по теории автоматического управления находим вид желаемого характеристического полинома

Примеры решения задач по теории автоматического управления

Из условия нулевой ошибки регулирования значение коэффициента усиления регулятора

Примеры решения задач по теории автоматического управления

Значения коэффициентов обратной связи по переменным состояния равны

Примеры решения задач по теории автоматического управления

Замкнутая система регулирования (рисунок 2.26) содержит объект управления на выходе Примеры решения задач по теории автоматического управления наблюдатель в форме, соответствующей каноническому управляемому представлению, П-регулятор с коэффициентом усиления Примеры решения задач по теории автоматического управления и обратными связями Примеры решения задач по теории автоматического управления по переменным состояния, формируемым наблюдателем.

Примеры решения задач по теории автоматического управления

Передаточная функция замкнутой системы регулирования равна

Примеры решения задач по теории автоматического управления

Расчет подтверждает, что установившаяся ошибка отсутствует, так как коэффициент передачи в установившемся режиме равен 2,05/2,05 = 1, а полученный характеристический полином системы регулирования равен желаемому. При единственной обратной связи

Примеры решения задач по теории автоматического управления

Кстати дополнительная теория из учебников тут.

Преобразования подобия

При анализе и синтезе многомерных систем необходимо уметь переходить от одной формы к другой — поскольку все эти системы подобные, такой переход называется преобразованием подобия или базиса.

Один из путей перехода, приемлемый для одномерной системы

  • составить по матрицам Примеры решения задач по теории автоматического управления передаточную функцию системы, а по ней записать требуемое представление в пространстве состояний.

В общем же случае используют матрицу перехода или преобразования базиса Примеры решения задач по теории автоматического управления размераПримеры решения задач по теории автоматического управления, тогда новая система уравнений состояния и наблюдения объекта имеет вид

Примеры решения задач по теории автоматического управления

откуда следует, что матрицы коэффициентов новой системы равны

Примеры решения задач по теории автоматического управления

(матрица Примеры решения задач по теории автоматического управления, при ее наличии, не претерпевает изменений, поскольку не связана с вектором состояний). Задаваясь произвольной матрицей Примеры решения задач по теории автоматического управления необходимого размера, можно получить бесконечное множество описаний одной и той же системы в пространстве состояний. Однако при любых преобразованиях должны выполняться два важных условия:

  • исходная и преобразованная система должны иметь одинаковые собственные значения (характеристические многочлены и их корни);
  • преобразование базиса не меняет передаточную функцию системы.

Приведение к канонической управляемой форме: матрица преобразования в этом случае равна отношению матрицы управляемости новой системы к матрице управляемости исходной, т.е. Примеры решения задач по теории автоматического управления. Необходимо найти характеристический полином системы, записать матрицы Примеры решения задач по теории автоматического управления и Примеры решения задач по теории автоматического управления системы в канонической управляемой форме, вычислить матрицы управляемости обеих систем и по ним матрицу преобразования Примеры решения задач по теории автоматического управления, с помощью которой осуществляется переход.

Переход к канонической наблюдаемой форме отличается лишь тем, что используются матрицы наблюдаемости, причем матрица преобразования базиса вычисляется по отношению матрицы наблюдаемости исходной системы к матрице наблюдаемости новой Примеры решения задач по теории автоматического управления (обе матрицы составляются в виде столбца).

Для перехода к управляемой форме должна быть полностью наблюдаема пара Примеры решения задач по теории автоматического управления для перехода к наблюдаемой форме должна быть полностью наблюдаема пара Примеры решения задач по теории автоматического управления.

Обратный переход, т.е. возвращение к исходной системе, например, после выбора параметров модального регулятора, во всех случаях осуществляется применением матрицы Примеры решения задач по теории автоматического управления в обратном порядке, т.е.

Примеры решения задач по теории автоматического управления

где Примеры решения задач по теории автоматического управления — матрица обратных связей замкнутой системы по переменным состояния.

К диагональной форме Примеры решения задач по теории автоматического управления приводятся системы с некратными вещественными полюсами, при этом матрицы исходной и преобразованной систем связаны соотношением Примеры решения задач по теории автоматического управления и матрица преобразования базиса равна Примеры решения задач по теории автоматического управления.

Пример №69

Пусть преобразуемый к канонической управляемой форме объект третьего порядка описывается системой уравнений

Примеры решения задач по теории автоматического управления

Решение:

Характеристический полином объекта равен

Примеры решения задач по теории автоматического управления

матрица управляемости

Примеры решения задач по теории автоматического управления

Используя вычисленный характеристический многочлен, записываем сопровождающую матрицу Примеры решения задач по теории автоматического управления затем для пары Примеры решения задач по теории автоматического управления найдем матрицу управляемости Примеры решения задач по теории автоматического управления новой системы и матрицу преобразования Примеры решения задач по теории автоматического управления

Примеры решения задач по теории автоматического управления

Применяя формулы

Примеры решения задач по теории автоматического управления

найдем описание системы в канонической форме управляемости (учитывая, что две матрицы были нам уже известны, оставалось вычислить лишь Примеры решения задач по теории автоматического управления)

Примеры решения задач по теории автоматического управления