Примеры решения заданий по математике

Оглавление:

Примеры решения задач по математике

Прежде чем изучать примеры решения задач, нужно знать теорию, поэтому для вас я подготовила очень краткую теорию вместе с примерами решения.

Эта страница подготовлена для студентов любых специальностей.

Если что-то непонятно вы всегда можете написать мне в воцап и я вам помогу!

Математика

Математика — точная наука, наука о пространственных формах и количественных отношениях. Она является основой почти всех наук, даже гуманитарных, поэтому так важно всем с первых классов изучать и понимать этот предмет. Математика не терпит произвола. Это олицетворение строгой логики и порядка. Она помогает изучить наш мир с его законами.

Освоение математики ещё со школьной скамьи позволяет развивать и упорядочивать мышление ребёнка, усиливает умственные способности. Эти знания будут той базой, которая позволит интеллектуально развиваться впоследствии. Здесь вы найдёте коллекцию видеоуроков по математике, а также конспекты, тесты, тренажёры к ним. Это поможет вам изучать и повторять этот предмет в любое время. А выполняя задания к урокам, вы сможете лучше усвоить предложенный материал.

Действительные числа

Действительное, число — математический объект, возникший из потребности измерения геометрических и физических величин окружающего мира, а также проведения таких вычислительных операций, как извлечение корня, вычисление логарифмов, решение алгебраических уравнений, исследование поведения функций.

Если натуральные числа возникли в процессе счёта, рациональные — из потребности оперировать частями целого, то действительные числа предназначены для измерения непрерывных величин. Таким образом, расширение запаса рассматриваемых чисел привело к множеству вещественных чисел, которое, помимо чисел рациональных, включает элементы, называемые иррациональными числами.

Лекции и примеры с решением:

  1. Прямые и обратные теоремы примеры с решением
  2. Делимость целых чисел примеры с решением
  3. Метод математической индукции примеры с решением
  4. Рациональные числа примеры с решением

Действительные числа, степени и корни, логарифмы. Тождественные преобразования алгебраических выражений

Возведение в степень — арифметическая операция, первоначально определяемая как результат многократного умножения числа на себя.

Корень — это 1) корень степени n из числа a — всякое число x (обозначаемое , a называется подкоренным выражением), n-я степень которого равна a (). Действие нахождения корня называется извлечением корня. 2) Корень уравнения — число, которое после подстановки его в уравнение вместо неизвестного обращает уравнение в тождество.

Логарифм — это степень, в которую надо возвести основание, чтобы получить аргумент, т.е. функция от двух переменных.

Тождественные преобразования представляют собой работу, которую мы проводим с числовыми и буквенными выражениями, а также с выражениями, которые содержат переменные. Все эти преобразования мы проводим для того, чтобы привести исходное выражение к такому виду, который будет удобен для решения задачи.

Алгебраическим выражением называется выражение, получаемое из постоянных и переменных при помощи операций сложения, вычитания, умножения, деления, возведения в целую степень и извлечения корня.

Задания на тождественные преобразования алгебраических выражений часто встречаются в вариантах экзаменов, проводимых в форме ЕГЭ как в качестве отдельных заданий, так и в качестве компонентов заданий (например, при решении алгебраических уравнений и неравенств). Для их выполнения требуется умение применять формулы сокращенного умножения, разложения квадратного трехчлена на множители и знать определения и свойства степеней, уметь выделять полный квадрат.

Лекции и примеры с решением:

  1. Множество действительных чисел примеры с решением
  2. Разложение многочлена на множители примеры с решением
  3. Производные пропорции примеры с решением
  4. Действия с корнями (радикалами) примеры с решением
  5. Степень с рациональным и действительным показателем примеры с решением
  6. Логарифмы примеры с решением

Последовательность. Арифметическая и геометрическая прогрессии. Предел последовательности

В математике последовательность — это пронумерованный набор каких-либо объектов, среди которых допускаются повторения, причём порядок объектов имеет значение.

Числовая последовательность – это упорядоченный набор чисел. Члены последовательности удобно нумеровать натуральными числами. Последовательности могут быть конечными и бесконечными.

Последовательность мы можем задать несколькими способами:

  1. словесно (описать ее члены, например: последовательность четных натуральных чисел);
  2. аналитически (задать формулу n-го члена как функцию натурального аргумента);
  3. рекуррентно (задать несколько первых членов и выразить каждый следующий член через один или несколько предыдущих).

Частные случаи последовательностей – арифметическая и геометрическая прогрессии.

Арифметическая и геометрическая прогрессии тесно связаны между собой.

Предел числовой последовательности — предел последовательности элементов числового пространства. Числовое пространство — это метрическое пространство, расстояние в котором определяется как модуль разности между элементами.

Лекции и примеры с решением:

  1. Числовая последовательность и арифметическая прогрессия с примерами решения
  2. Геометрическая прогрессия с примерами решения
  3. Предел последовательности с примером решения
  4. Бесконечно убывающая геометрическая прогрессия с примерами решения

Основные формулы тригонометрии. Арксинус, арккосинус и арктангенс числа

Тригонометрия — раздел математики, в котором изучаются тригонометрические функции и их использование в геометрии.

Арксинус (arcsin) – это обратная тригонометрическая функция. Арксинус x определяется как функция, обратная к синусу x, при -1≤x≤1.

Арккосинус (arccos) – это обратная тригонометрическая функция. Арккосинус x определяется как функция, обратная к косинусу x, при -1≤x≤1.

Арктангенс (arctg или arctan) – это обратная тригонометрическая функция. Арктангенс x определяется как функция, обратная к тангенсу x, где x – любое число (x∈ℝ).

Лекции и примеры с решением:

  1. Определения синуса, косинуса, тангенса и котангенса угла с примером решения
  2. Зависимость между синусом, косинусом, тангенсом и котангенсом с примером решения
  3. Четность, нечетность и периодичность тригонометрических функций с примером решения
  4. Формулы двойного и тройного аргумента с примерами решения
  5. Формулы понижения степени с примерами решения
  6. Формулы приведения с примерами решения
  7. Преобразование произведения синусов и косинусов в сумму с примером решения

Арксинус, арккосинус и арктангенс числа

Арксинус (arcsin) – это обратная тригонометрическая функция. Арксинус x определяется как функция, обратная к синусу x, при -1≤x≤1.

Арккосинус (arccos) – это обратная тригонометрическая функция. Арккосинус x определяется как функция, обратная к косинусу x, при -1≤x≤1.

Арктангенс (arctg или arctan) – это обратная тригонометрическая функция. Арктангенс x определяется как функция, обратная к тангенсу x, где x – любое число (x∈ℝ).

Лекции и примеры с решением:

  1. Арксинус с примером решения
  2. Арккосинус с примерами решения
  3. Арктангенс с примерами решения

Числовые неравенства

Числовое неравенство – это неравенство, в записи которого по обе стороны от знака неравенства находятся числа или числовые выражения.

Лекция и примеры с решением:

Алгебраические уравнения

Алгебраическим уравнением называется уравнение вида P (x) = 0, где P (x)— многочлен с целыми (или рациональными) коэффициентами.

Лекции и примеры с решением:

  1. Уравнение и его корни. Преобразование уравнений
  2. Рациональные уравнения примеры с решением
  3. Иррациональные уравнения примеры с решением

Показательные и логарифмические уравнения

Показательные уравнения — это уравнения в которых неизвестное содержится в показателе степени. Простейшее показательное уравнение имеет вид: ах = аb, где а> 0, а 1, х — неизвестное.

Логарифмические уравнения — это любое уравнение, которое сводится к виду log a f(x) = k, где a > 0, a ≠ 1 — основание логарифма, f(x) — произвольная функция, k — некоторая постоянная.

Лекции и примеры с решением:

  1. Показательные уравнения примеры с решением
  2. Логарифмические уравнения примеры с решением

Тригонометрические уравнения

Тригонометрические уравнения — это уравнение вида sinx=a, cos x=a, tgx=a, где a — некоторое действительное число. Решаются тригонометрические уравнения они проще всего с помощью тригонометрического круга

Лекции и примеры с решением:

  1. Простейшие тригонометрические уравнения примеры с решением
  2. Решение уравнений с помощью введения вспомогательного угла, методом замены неизвестного и разложения на множители, с помощью формул понижения степени примеры с решением
  3. Уравнения, решаемые с помощью оценки их левой и правой частей с примерами решения
  4. Тригонометрические уравнения различных видов с примерами решения

Системы уравнений

Система уравнений — это условие, состоящее в одновременном выполнении нескольких уравнений относительно нескольких (или одной) переменных.

Лекции и примеры с решением:

Системы алгебраических уравнений

Системы алгебраических уравнений — система уравнений, каждое уравнение в которой является линейным — алгебраическим уравнением первой степени.

В классическом варианте коэффициенты при переменных, свободные члены и неизвестные считаются вещественными числами, но все методы и результаты сохраняются (либо естественным образом обобщаются) на случай любых полей, например, комплексных чисел.

Решение систем алгебраических уравнений — одна из классических задач линейной алгебры, во многом определившая её объекты и методы. Кроме того, линейные алгебраические уравнения и методы их решения играют важную роль во многих прикладных направлениях, в том числе в линейном программировании, эконометрике.

Нелинейные системы уравнений с двумя неизвестными

Решение систем нелинейных уравнений — раздел математики в алгебре считается одним из трудных разделов, так как нет единых способов решения систем алгебраических уравнений, особенно, если речь идет о нелинейных системах уравнений. Так как школьники испытывают затруднения при выполнении такого типа заданий, то возникла идея составить рекомендации для старшеклассников по теме «Нелинейные системы уравнений».

Лекции и примеры с решением:

  1. Однородные системы нелинейных уравнений примеры с решением
  2. Симметрические системы примеры с решением
  3. Решение других типов систем алгебраических систем уравнений
  4. Иррациональные системы с двумя неизвестными с примерами решения
  5. Алгебраические системы с тремя неизвестными с примерами решения

Задачи на составление и решение уравнений

На вступительных экзаменах в вузы часто предлагаются задачи на составление и решение уравнений. Для решения таких задач обычно требуется ввести неизвестные, записать условия задачи в виде уравнений, связывающих эти неизвестные, решить полученное уравнение или систему уравнений и произвести отбор решений по смыслу задач.

Лекции и примеры с решением:

  1. Задачи на движение с примерами решения
  2. Задачи на сплавы и смеси с примерами решения
  3. Задачи на совместную работу с примерами решения

Системы показательных, логарифмических и тригонометрических уравнений

При решении систем уравнений, содержащих неизвестные в показателе степени и в ее основании или под знаком логарифма и в его основании, применяются методы решения систем алгебраических уравнений, а также методы решения показательных и логарифмических уравнений.

Лекции и примеры с решением:

  1. Примеры решения систем показательных уравнений
  2. Примеры решения систем, содержащих логарифмы с постоянными основаниями
  3. Примеры решения систем, содержащих логарифмы с переменными основаниями
  4. Примеры решений систем тригонометрических уравнений

Алгебраические неравенства

Алгебраические неравенства — это решение неравенств при которых значение переменной, обращается в это неравенство в верное числовое неравенство.

Алгебраические неравенства подразделяются на неравенства первой степени, второй степени и так далее. 

Метод решения алгебраических неравенств заключается в приведении их с помощью равносильных преобразований к системам или совокупностям легко решаемых рациональных неравенств или уравнений. 

Частным решением алгебраического неравенства называют значение переменной, при которой алгебраическое неравенство является верным числовым неравенством.

Общим решением алгебраического неравенства называют множество всех частных решений данного неравенства.

Решить алгебраическое неравенство — значит найти все его решения (и обосновать, что других решений нет) или доказать, что решений нет.

Неравенства называются равносильными, если они имеют одинаковые решения или решений не имеют.

При решении неравенства его заменяют более простым равносильным неравенством.

  1. Любой член неравенства можно перенести из одной части неравенства в другую с противоположным знаком, не меняя при этом знак неравенства.
  2. Обе части неравенства можно умножить или разделить на одно и то же положительное число, не меняя при этом знак неравенства.
  3. Обе части неравенства можно умножить или разделить на одно и то же отрицательное число, изменив при этом знак неравенства на противоположный.

Лекция и примеры с решением:

Квадратный трехчлен и квадратные неравенства

Квадратный трехчлен и квадратные неравенства — это любое квадратное уравнение в котором заменён знак «=» (равно) на любой значок неравенства (> ≥ < ≤ ≠).

Лекция и примеры с решением:

Рациональные неравенства. Метод интервалов

Рациональное неравенство – это неравенство с переменными, обе части которого есть рациональные выражения.

Метод интервалов – простой способ решения дробно-рациональных неравенств. Так называются неравенства, содержащие рациональные (или дробно-рациональные) выражения, зависящие от переменной.

Лекция и примеры с решением:

Расположение корней квадратного трехчлена на числовой оси

Решение многих задач с параметрами по математике, предлагаемых на экзаменах по математике, в частности, на ЕГЭ по математике, требует умения правильно формулировать необходимые и достаточные условия, соответствующие различным случаям расположения корней квадратного трёхчлена на числовой оси.

Лекция и примеры с решением:

Иррациональные неравенства

Иррациональные неравенства – это переменная содержится под знаком корня. Иррациональное неравенство, как правило, сводится к равносильной системе (или совокупности систем) неравенств

Лекция и примеры с решением:

Показательные, логарифмические и тригонометрические неравенства

Показательные неравенства – это неравенства с переменной в показателе степени.

Логарифмические неравенства – это неравенства, содержащее переменную только под знаком логарифма: loga f(х) > logag(х).

Тригонометрические неравенства – это неравенства, которые содержат переменную под знаком тригонометрической функции.

Лекция и примеры с решением:

Логарифмические неравенства

Рассмотрены простейшие логарифмические неравенства, такого типа задания вполне можно встретить в качестве задания 15 на ЕГЭ по математике. При решении логарифмических неравенств очень важно не забывать про область допустимых значений аргумента.

Лекции и примеры с решением:

  1. Логарифмические неравенства с постоянными основаниями с примерами решения
  2. Логарифмические неравенства с переменными основаниями с примерами решения

Тригонометрические неравенства

Решение тригонометрических неравенств зачастую сводится к решению простейших тригонометрических неравенств вида:  sinx<a sin⁡x<a,  cosx<a cos⁡x<a,  tgx<a tg⁡x<a,  ctgx<a ctg⁡x<a,  sinx>a sin⁡x>a,  cosx>a cos⁡x>a,  tgx>a tg⁡x>a,  ctgx>a ctg⁡x>a,  sinx≤a sin⁡x≤a,  cosx≤a cos⁡x≤a,  tgx≤a tg⁡x≤a,  ctgx≤a ctg⁡x≤a,  sinx≥a sin⁡x≥a,  cos≥a cos≥a,  tgx≥a tg⁡x≥a,  tgx≥a

Лекция и примеры с решением:

Системы неравенств с двумя переменными

Система неравенств с двумя переменными – это система неравенств, которая в своем составе имеет два и более линейных неравенств с двумя переменными.

Решением неравенства с двумя переменными называется пара значений переменных, обращающая его в верное числовое неравенство.

Лекции и примеры с решением:

  1. Неравенства и системы линейных неравенств с двумя переменными с примером решения
  2. Пример решения линейных неравенств с двумя переменными

Системы линейных уравнений и неравенств с двумя переменными

Система линейных уравнений и неравенств с двумя переменными – это неравенства вида ax+by≤()c, где и x и y — неизвестные переменные, а и a, b и c — некоторые числа, причем и a и b отличны от нуля.

Лекции и примеры с решением:

  1. Системы линейных уравнений и неравенств с двумя переменными с примерами решения
  2. Примеры решения уравнения, неравенства и системы неравенств с двумя переменными, содержащие знак модуля

Нелинейные системы неравенств с двумя переменными

Нелинейные системы неравенств с двумя переменными – это неравенства вида ах + bу + с<0 или ах + bу + с >0, где х и у – переменные, а, b, c – некоторые числа.

Лекция и примеры с решением:

Возможно эти страницы вам будут полезны: