Примеры решения задач по эконометрике

Примеры решения задач по эконометрике

Здравствуйте на этой странице я собрала теорию и практику с примерами решения задач по предмету эконометрика с решением по каждой теме, чтобы вы смогли освежить знания!

Если что-то непонятно вы всегда можете написать мне в воцап и я вам помогу!

Эконометрика

Эконометрика — это наука, изучающая конкретные количественные и качественные взаимосвязи экономических объектов и процессов с помощью математических и статистических методов и моделей.

Эконометрика — эффективный инструмент научного анализа и моделирования в профессиональной деятельности экономиста, менеджера и инженера

Парная регрессия и корреляция

Парная регрессия — уравнение связи двух переменных Примеры решения задач по эконометрике и Примеры решения задач по эконометрике:

Примеры решения задач по эконометрике

где Примеры решения задач по эконометрике — зависимая переменная (результативный признак);

Примеры решения задач по эконометрике — независимая, объясняющая переменная (признак-фактор).

Различают линейные и нелинейные регрессии.

Линейная регрессия : Примеры решения задач по эконометрике

Нелинейные регрессии делятся на два класса: регрессии, нелинейные относительно включенных в анализ объясняющих переменных, но линейные по оцениваемым параметрам, и регрессии, нелинейные по оцениваемым параметрам.

Возможно эта страница вам будет полезна:

Предмет эконометрика

Регрессии, нелинейные по объясняющим переменным:

• полиномы разных степеней Примеры решения задач по эконометрике

• равносторонняя гипербола Примеры решения задач по эконометрике

Регрессии, нелинейные по оцениваемым параметрам’.

• степенная Примеры решения задач по эконометрике

• показательная Примеры решения задач по эконометрике

• экспоненциальная Примеры решения задач по эконометрике

Построение уравнения регрессии сводится к оценке ее параметров. Для оценки параметров регрессий, линейных по параметрам, используют метод наименьших квадратов (МНК). МНК позволяет получить такие оценки параметров, при которых сумма квадратов отклонений фактических значений результативного признака Примеры решения задач по эконометрике от теоретических Примеры решения задач по эконометрике минимальна, т.е.

Примеры решения задач по эконометрике

Для линейных и нелинейных уравнений, приводимых к линейным, решается следующая система относительно Примеры решения задач по эконометрике и Примеры решения задач по эконометрике:

Примеры решения задач по эконометрике

Можно воспользоваться готовыми формулами, которые вытекают из этой системы:

Примеры решения задач по эконометрике

Тесноту связи изучаемых явлений оценивает линейный коэффициент парной корреляции Примеры решения задач по эконометрике для линейной регрессии Примеры решения задач по эконометрике:

Примеры решения задач по эконометрике

и индекс корреляции Примеры решения задач по эконометрике — для нелинейной регрессии Примеры решения задач по эконометрике:

Примеры решения задач по эконометрике

Оценку качества построенной модели даст коэффициент (индекс) детерминации, а также средняя ошибка аппроксимации.

Средняя ошибка аппроксимации — среднее отклонение расчетных значений от фактических:

Примеры решения задач по эконометрике

Допустимый предел значений Примеры решения задач по эконометрике — не более 8 — 10%.

Средний коэффициент эластичности Примеры решения задач по эконометрике показывает, на сколько процентов в среднем по совокупности изменится результат у от своей средней величины при изменении фактора Примеры решения задач по эконометрике на 1% от своего среднего значения:

Примеры решения задач по эконометрике

Задача дисперсионного анализа состоит в анализе дисперсии зависимой переменной:

Примеры решения задач по эконометрике

где Примеры решения задач по эконометрике — общая сумма квадратов отклонений;

Примеры решения задач по эконометрике — сумма квадратов отклонений, обусловленная регрессией («объясненная» или «факторная»);

Примеры решения задач по эконометрике — остаточная сумма квадратов отклонений.

Долю дисперсии, объясняемую регрессией, в общей дисперсии результативного признака у характеризует коэффициент (индекс) детерминации Примеры решения задач по эконометрике:

Примеры решения задач по эконометрике

Коэффициент детерминации — квадрат коэффициента или индекса корреляции.

Примеры решения задач по эконометрике-тест — оценивание качества уравнения регрессии — состоит в проверке гипотезы Примеры решения задач по эконометрике о статистической незначимости уравнения регрессии и показателя тесноты связи. Дня этого выполняется сравнение фактического Примеры решения задач по эконометрике и критического (табличного) Примеры решения задач по эконометрике значений Примеры решения задач по эконометрике-критерия Фишера. Примеры решения задач по эконометрике определяется из соотношения значений факторной и остаточной дисперсий, рассчитанных на одну степень свободы:

Примеры решения задач по эконометрике

где Примеры решения задач по эконометрике — число единиц совокупности;

Примеры решения задач по эконометрике — число параметров при переменных Примеры решения задач по эконометрике.

Примеры решения задач по эконометрике — это максимально возможное значение критерия под влиянием случайных факторов при данных степенях свободы и уровне значимости Примеры решения задач по эконометрике. Уровень значимости Примеры решения задач по эконометрике — вероятность отвергнуть правильную гипотезу при условии, что она верна. Обычно Примеры решения задач по эконометрике принимается равной 0,05 или 0,01.

Если Примеры решения задач по эконометрике, то Примеры решения задач по эконометрике — гипотеза о случайной природе оцениваемых характеристик отклоняется и признается их статистическая значимость и надежность. Если Примеры решения задач по эконометрике, то гипотеза Примеры решения задач по эконометрике не отклоняется и признается статистическая незначимость, ненадежность уравнения регрессии.

Для оценки статистической значимости коэффициентов регрессии и корреляции рассчитываются Примеры решения задач по эконометрике-критерий Стьюдента и доверительные интервалы каждого из показателей. Выдвигается гипотеза Примеры решения задач по эконометрике о случайной природе показателей, т.е. о незначимом их отличии от нуля. Оценка значимости коэффициентов регрессии и корреляции с помощью Примеры решения задач по эконометрике-критерия Стьюдента проводится путем сопоставления их значений с величиной случайной ошибки:

Примеры решения задач по эконометрике

Случайные ошибки параметров линейной регрессии и коэффициента корреляции определяются по формулам:

Примеры решения задач по эконометрике

Сравнивая фактическое и критическое (табличное) значения Примеры решения задач по эконометрике-статистики — Примеры решения задач по эконометрике и Примеры решения задач по эконометрике — принимаем или отвергаем гипотезу Примеры решения задач по эконометрике.

Связь между Примеры решения задач по эконометрике-критерием Фишера и Примеры решения задач по эконометрике-статистикой Стьюдента выражается равенством

Примеры решения задач по эконометрике

Если Примеры решения задач по эконометрике то Примеры решения задач по эконометрике отклоняется, т.е. Примеры решения задач по эконометрике и Примеры решения задач по эконометрике не случайно отличаются от нуля и сформировались под влиянием систематически действующего фактора Примеры решения задач по эконометрике. Если Примеры решения задач по эконометрике, то гипотеза Примеры решения задач по эконометрике не отклоняется и признается случайная природа формирования Примеры решения задач по эконометрике или Примеры решения задач по эконометрике.

Для расчета доверительного интервала определяем предельную ошибку Примеры решения задач по эконометрике для каждого показателя:

Примеры решения задач по эконометрике

Формулы для расчета доверительных интервалов имеют следующий вид:

Примеры решения задач по эконометрике

Если в границы доверительного интервала попадает ноль, т.е. нижняя граница отрицательна, а верхняя положительна, то оцениваемый параметр принимается нулевым, так как он не может одновременно принимать и положительное, и отрицательное значения.

Прогнозное значение Примеры решения задач по эконометрике определяется путем подстановки в уравнение регрессии Примеры решения задач по эконометрике соответствующего (прогнозного) значения Примеры решения задач по эконометрике. Вычисляется средняя стандартная ошибка прогноза и строится доверительный интервал прогноза Примеры решения задач по эконометрике:

Примеры решения задач по эконометрике

где

Примеры решения задач по эконометрике
Примеры решения задач по эконометрике

Возможно эта страница вам будет полезна:

Решение задач по эконометрике

Пример задачи №1

По семи территориям Уральского района за 199Х г. известны значения двух признаков (табл. 1.1).

Примеры решения задач по эконометрике

Требуется:

  • Для характеристики зависимости Примеры решения задач по эконометрике от Примеры решения задач по эконометрике рассчитать параметры следующих функций:

а)линейной;

б) степенной;

в) показательной;

г) равносторонней гиперболы.

Оценить каждую модель через среднюю ошибку аппроксимации Примеры решения задач по эконометрике и Примеры решения задач по эконометрике-критерий Фишера.

Решение:

1а. Для расчета параметров Примеры решения задач по эконометрике и Примеры решения задач по эконометрике линейной регрессии

Примеры решения задач по эконометрике

решаем систему нормальных уравнений относительно Примеры решения задач по эконометрике и Примеры решения задач по эконометрике:

Примеры решения задач по эконометрике

По исходным данным рассчитываем

Примеры решения задач по эконометрике
Примеры решения задач по эконометрике

Уравнение регрессии:

Примеры решения задач по эконометрике

С увеличением среднедневной заработной платы на 1 руб. доля расходов на покупку продовольственных товаров снижается в среднем на 0,35 %-ных пункта. Рассчитаем линейный коэффициент парной корреляции:

Примеры решения задач по эконометрике

Связь умеренная, обратная.

Определим коэффициент детерминации:

Примеры решения задач по эконометрике

Вариация результата на 12,7% объясняется вариацией фактора Примеры решения задач по эконометрике. Подставляя в уравнение регрессии фактические значения Примеры решения задач по эконометрике, определим теоретические (расчетные) значения Примеры решения задач по эконометрике. Найдем величину средней ошибки аппроксимации Примеры решения задач по эконометрике:

Примеры решения задач по эконометрике

В среднем расчетные значения отклоняются от фактических на 8,1%.

Рассчитаем Примеры решения задач по эконометрике-критерий:

Примеры решения задач по эконометрике

поскольку Примеры решения задач по эконометрике, следует рассмотреть Примеры решения задач по эконометрике

Полученное значение указывает на необходимость принять гипотезу Примеры решения задач по эконометрике о случайной природе выявленной зависимости и статистической незначимости параметров уравнения и показателя тесноты связи.

  • Построению степенной модели Примеры решения задач по эконометрике предшествует процедура линеаризации переменных. В примере линеаризация производится путем логарифмирования обеих частей уравнения:
Примеры решения задач по эконометрике
Примеры решения задач по эконометрике

Для расчетов используем данные табл. 1.3.

Примеры решения задач по эконометрике

Рассчитаем Примеры решения задач по эконометрике и Примеры решения задач по эконометрике:

Примеры решения задач по эконометрике

Получим линейное уравнение:

Примеры решения задач по эконометрике

Выполнив его потенцирование, получим:

Примеры решения задач по эконометрике

Подставляя в данное уравнение фактические значения Примеры решения задач по эконометрике, получаем теоретические значения результата Примеры решения задач по эконометрике. По ним рассчитаем показатели: тесноты связи — индекс корреляции Примеры решения задач по эконометрике и среднюю ошибку аппроксимации Примеры решения задач по эконометрике:

Примеры решения задач по эконометрике

Характеристики степенной модели указывают, что она несколько лучше линейной функции описывает взаимосвязь.

1в. Построению уравнения показательной кривой Примеры решения задач по эконометрике предшествует процедура линеаризации переменных при логарифмировании обеих частей уравнения:

Примеры решения задач по эконометрике

где

Примеры решения задач по эконометрике

Для расчетов используем данные табл. 1.4.

Примеры решения задач по эконометрике

Значения параметров регрессии Примеры решения задач по эконометрике и Примеры решения задач по эконометрике составили:

Примеры решения задач по эконометрике

Получено линейное уравнение:

Примеры решения задач по эконометрике

Произведем потенцирование полученного уравнения и запишем его в обычной форме:

Примеры решения задач по эконометрике

Тесноту связи оценим через индекс корреляции Примеры решения задач по эконометрике:

Примеры решения задач по эконометрике

Связь умеренная.

Примеры решения задач по эконометрике, что говорит о повышенной ошибке аппроксимации, но в допустимых пределах. Показательная функция чуть хуже, чем степенная, она описывает изучаемую зависимость.

1г. Уравнение равносторонней гиперболы Примеры решения задач по эконометрике линеаризуется при замене:Примеры решения задач по эконометрике. Тогда Примеры решения задач по эконометрике.

Для расчетов используем данные табл. 1.5.

Примеры решения задач по эконометрике

Значения параметров регрессии Примеры решения задач по эконометрике и Примеры решения задач по эконометрике составили:

Примеры решения задач по эконометрике

Получено уравнение:

Примеры решения задач по эконометрике

Индекс корреляции:

Примеры решения задач по эконометрике

Примеры решения задач по эконометрике. По уравнению равносторонней гиперболы полумена наибольшая оценка тесноты связи: Примеры решения задач по эконометрике =0,3944 (по сравнению с линейной, степенной и показательной регрессиями). Примеры решения задач по эконометрике остается на допустимом уровне:

Примеры решения задач по эконометрике

где

Примеры решения задач по эконометрике

Следовательно, принимается гипотеза Примеры решения задач по эконометрике о статистически незначимых параметрах этого уравнения. Этот результат можно объяснить сравнительно невысокой теснотой выявленной зависимости и небольшим числом наблюдений.

Возможно эта страница вам будет полезна:

Задачи по эконометрике

Пример задачи №2

По территориям региона приводятся данные за 199Х г. (табл. 1.6).

Примеры решения задач по эконометрике

Требуется:

  1. Построить линейное уравнение парной регрессии у от х.
  2. Рассчитать линейный коэффициент парной корреляции и среднюю ошибку аппроксимации.
  3. Оценить статистическую значимость параметров регрессии и корреляции.
  4. Выполнить прогноз заработной платы у при прогнозном значении среднедушевого прожиточного минимумах, составляющем 107% от среднего уровня.
  5. Оценить точность прогноза, рассчитав ошибку прогноза и его доверительный интервал.

Решение:

  • Для расчета параметров уравнения линейной регрессии строим расчетную таблицу (табл. 1.7).
Примеры решения задач по эконометрике

Получено уравнение регрессии:

Примеры решения задач по эконометрике

С увеличением среднедушевого прожиточного минимума на 1 руб. среднедневная заработная плата возрастает в среднем на 0,92 руб.

  • Тесноту линейной связи оценит коэффициент корреляции:
Примеры решения задач по эконометрике

Это означает, что 52% вариации заработной платы (Примеры решения задач по эконометрике) объясняется вариацией фактора Примеры решения задач по эконометрике — среднедушевого прожиточного минимума. Качество модели определяет средняя ошибка аппроксимации:

Примеры решения задач по эконометрике

Качество построенной модели оценивается как хорошее, так как Примеры решения задач по эконометрике не превышает 8 — 10%.

  • Оценку статистической значимости параметров регрессии проведем с помощью Примеры решения задач по эконометрике-статистики Стьюдента и путем расчета доверительного интервала каждого из показателей.

Выдвигаем гипотезу Примеры решения задач по эконометрике о статистически незначимом отличии показателей от нуля:

Примеры решения задач по эконометрике

Примеры решения задач по эконометрике для числа степеней свободы

Примеры решения задач по эконометрике

составит 2,23.

Определим случайные ошибки Примеры решения задач по эконометрике :
Тогда

Примеры решения задач по эконометрике

Фактические значения Примеры решения задач по эконометрике-статистики превосходят табличные значения:

Примеры решения задач по эконометрике

поэтому гипотеза Примеры решения задач по эконометрике отклоняется, т.е. Примеры решения задач по эконометрике и Примеры решения задач по эконометрике не случайно отличаются от нуля, а статистически значимы.

Рассчитаем доверительный интервал для Примеры решения задач по эконометрике и Примеры решения задач по эконометрике. Для этого определим предельную ошибку для каждого показателя:

Примеры решения задач по эконометрике

Доверительные интервалы:

Примеры решения задач по эконометрике

Анализ верхней и нижней границ доверительных интервалов приводит к выводу о том, что с вероятностью

Примеры решения задач по эконометрике

параметры Примеры решения задач по эконометрике и Примеры решения задач по эконометрике, находясь в указанных границах, не принимают нулевых значений, т.е. не являются статистически незначимыми и существенно отличны от нуля.

Полученные оценки уравнения регрессии позволяют использовать его для прогноза. Если прогнозное значение прожиточного минимума составит:

Примеры решения задач по эконометрике

тогда прогнозное значение прожиточного минимума составит:

Примеры решения задач по эконометрике

5. Ошибка прогноза составит:

Примеры решения задач по эконометрике

Предельная ошибка прогноза, которая в 95% случаев не будет превышена, составит:

Примеры решения задач по эконометрике

Доверительный интервал прогноза:

Примеры решения задач по эконометрике

Выполненный прогноз среднемесячной заработной платы оказался надежным

Примеры решения задач по эконометрике

но неточным, так как диапазон верхней и нижней границ доверительного интервала Примеры решения задач по эконометрике составляет 1,95 раза:

Примеры решения задач по эконометрике

Пример задачи №3

По группе предприятий, производящих однородную продукцию, известно, как зависит себестоимость единицы продукции у от факторов, приведенных в табл. 1.8.

Примеры решения задач по эконометрике

Требуется:

  1. Определить с помощью коэффициентов эластичности силу влияния каждого фактора на результат.
  2. Ранжировать факторы по силе влияния.

Решение:

  • Для уравнения равносторонней гиперболы
Примеры решения задач по эконометрике
Примеры решения задач по эконометрике

Для уравнения прямой

Примеры решения задач по эконометрике
Примеры решения задач по эконометрике

Для уравнения степенной зависимости

Примеры решения задач по эконометрике
Примеры решения задач по эконометрике

Для уравнения показательной зависимости

Примеры решения задач по эконометрике

Примеры решения задач по эконометрике

Сравнивая значения Примеры решения задач по эконометрике, ранжируем Примеры решения задач по эконометрике по силе их влияния на себестоимость единицы продукции:

Примеры решения задач по эконометрике

Для формирования уровня себестоимости продукции фуппы предприятий первоочередное значение имеют цены на энергоносители; в гораздо меньшей степени влияют трудоемкость продукции и отчисляемая часть прибыли. Фактором снижения себестоимости выступает размер производства: с ростом его на 1% себестоимость единицы продукции снижается на -0,97%.

Пример задачи №4

Зависимость потребления продукта А от среднедушевого дохода по данным 20 семей характеризуется следующим образом:

уравнение регрессии

Примеры решения задач по эконометрике

индекс корреляции

Примеры решения задач по эконометрике

остаточная дисперсия

Примеры решения задач по эконометрике

Требуется:

Провести дисперсионный анализ полученных результатов.

Решение:

Результаты дисперсионного анализа приведены в табл. 1.9.

Примеры решения задач по эконометрике

В силу того что

Примеры решения задач по эконометрике

гипотеза о случайности различий факторной и остаточной дисперсий отклоняется. Эти различия существенны, статистически значимы, уравнение надежно, значимо, показатель тесноты связи надежен и отражает устойчивую зависимость потребления продукта Примеры решения задач по эконометрике от среднедушевого дохода.

Реализация типовых задач в Excel

Решение с помощью ППП Excel

  1. Встроенная статистическая функция ЛИНЕЙН определяет параметры линейной регрессии Примеры решения задач по эконометрике. Порядок вычисления следующий:

1) введите исходные данные или откройте существующий файл, содержащий анализируемые данные;

2) выделите область пустых ячеек 5×2 (5 строк, 2 столбца) для вывода результатов регрессионной статистики или область 1×2 — для получения только оценок коэффициентов регрессии;

3) активизируйте Мастер функций любым нз способов:

а) в главном меню выберите Вставка/Функция;

б) на панели инструментов Стандартная щелкните по кнопке Вставка функции;

4) в окне Категория (рис. 1.1) выберите Статистические, в окне Функция — ЛИНЕЙН. Щелкните по кнопке ОК;

Примеры решения задач по эконометрике

5) заполните аргументы функции (рис. 1.2):

Известные значенияу — диапазон, содержащий данные результативного признака;

Известные значения_х — диапазон, содержащий данные факторов независимого признака;

Константа — логическое значение, которое указывает на наличие или на отсутствие свободного члена в уравнении; если Константа = 1, то свободный член рассчитывается обычным образом, если Константа = 0, то свободный член равен 0; Статистика — логическое значение, которое указывает, выводить дополнительную информацию по регрессионному анализу или нет. Если Статистика = 1, то дополнительная информация выводится, если Статистика — 0, то выводятся только оценки параметров уравнения. Щелкните по кнопке ОК;

Примеры решения задач по эконометрике

6) в левой верхней ячейке выделенной области появится первый элемент итоговой таблицы. Чтобы раскрыть всю таблицу, нажмите на клавишу Примеры решения задач по эконометрике, а затем — на комбинацию клавиш

Примеры решения задач по эконометрике

Дополнительная регрессионная статистика будет выводиться в порядке, указанном в следующей схеме:

Примеры решения задач по эконометрике

Для вычисления параметров экспоненциальной кривой Примеры решения задач по эконометрике в MS Excel применяется встроенная статистическая функция ЛГРФПРИБЛ. Порядок вычисления аналогичен применению функции ЛИНЕЙН.

Для данных из примера 2 результат вычисления функции ЛИНЕЙН представлен на рис. 1.3, функции ЛГРФПРИБЛ — на рис. 1.4.

Примеры решения задач по эконометрике
  1. С помощью инструмента анализа данных Регрессия, помимо результатов регрессионной статистики, дисперсионного анализа и доверительных интервалов, можно получить остатки и графики подбора линии регрессии, остатков и нормальной вероятности. Порядок действий следующий:

1) проверьте доступ к пакету анализа. В главном меню последовательно выберите Сервис /Надстройки. Установите флажок Пакет анализа (рис. 1.5);

Примеры решения задач по эконометрике

2) в главном меню выберите Сервис/Анализ данных/Регрессия. Щелкните по кнопке ОК;

3) заполните диалоговое окно ввода данных и параметров вывода (рис. 1.6):

Входной интервал Примеры решения задач по эконометрике — диапазон, содержащий данные результативного признака;

Входной интервал Примеры решения задач по эконометрике — диапазон, содержащий данные факторов независимого признака;

Метки — флажок, который указывает, содержит ли первая строка названия столбцов или нет;

Константа — ноль — флажок, указывающий на наличие или отсутствие свободного члена в уравнении;

Выходной интервал — достаточно указать левую верхнюю ячейку будущего диапазона;

Новый рабочий лист — можно задать произвольное имя нового листа.

Если необходимо получить информацию и графики остатков, установите соответствующие флажки в диалоговом окне. Щелкните по кнопке ОК.

Примеры решения задач по эконометрике

Результаты регрессионного анализа для данных из примера 2 представлены на рис. 1.7.

Примеры решения задач по эконометрике

Решение с помощью ППП Statgraphics

Порядок вычислений при использовании функции Simple Regression следующий:

1) введите исходные данные (рис. 1.8) или откройте существующий файл, содержащий исходные данные;

2) в главном меню последовательно выберите Relate/Simple Regression;

3) заполните диалоговое окно ввода данных. В поле «Примеры решения задач по эконометрике» введите название столбца, содержащего зависимую переменную, в поле «Примеры решения задач по эконометрике» -название столбца, содержащего значения факторного признака. Щелкните по кнопке ОК;

Примеры решения задач по эконометрике

4) в окне табличных настроек поставьте флажок напротив Analysis Summary.

Результаты вычислений появятся в отдельном окне. Для данных из примера 2 результат применения функции Simple Regression представлен на рис. 1.9.

Примеры решения задач по эконометрике

Как видим, результаты вычислений вручную и с помощью компьютера совпадают.

Возможно эта страница вам будет полезна:

Курсовая работа по эконометрике

Множественная регрессия и корреляция

Множественная регрессия — уравнение связи с несколькими независимыми переменными:

Примеры решения задач по эконометрике

где Примеры решения задач по эконометрике — зависимая переменная (результативный признак);

Примеры решения задач по эконометрике — независимые переменные (факторы).

Для построения уравнения множественной регрессии чаще используются следующие функции:

• линейная —

Примеры решения задач по эконометрике

• степенная —

Примеры решения задач по эконометрике

• экспонента —

Примеры решения задач по эконометрике

• гипербола —

Примеры решения задач по эконометрике

Можно использовать и другие функции, приводимые к линейному виду.

Для оценки параметров уравнения множественной регрессии применяют метод наименьших квадратов (МНК). Для линейных уравнений и нелинейных уравнений, приводимых к линейным, строится следующая система нормальных уравнений, решение которой позволяет получить оценки параметров регрессии:

Примеры решения задач по эконометрике

Для ее решения может быть применен метод определителей:

Примеры решения задач по эконометрике

где

Примеры решения задач по эконометрике

определитель системы.

Примеры решения задач по эконометрике — частные определители; которые получаются путем замены соответствующего столбца матрицы определителя системы данными левой части системы.

Другой вид Уравнения множественной регрессии — уравнение регрессии в стандартизованном масштабе:

Примеры решения задач по эконометрике

у-у

где Примеры решения задач по эконометрике — стандартизованные переменные;

Примеры решения задач по эконометрике — стандартизованные коэффициенты регрессии.

К уравнению множественной регрессии в стандартизованном масштабе применим МНК. Стандартизованные коэффициенты регрессии (Примеры решения задач по эконометрике-коэффициенты) определяются из следующей системы уравнений:

Примеры решения задач по эконометрике

Связь коэффициентов множественной регрессии Примеры решения задач по эконометрике со стандартизованными коэффициентами Примеры решения задач по эконометрике описывается соотношением

Примеры решения задач по эконометрике

Параметр Примеры решения задач по эконометрике определяется как

Примеры решения задач по эконометрике

Средние коэффициенты эластичности для линейной регрессии рассчитываются по формуле

Примеры решения задач по эконометрике

Для расчета частных коэффициентов эластичности применяется следующая формула:

Примеры решения задач по эконометрике

Тесноту совместного влияния факторов на результат оценивает индекс множественной корреляции:

Примеры решения задач по эконометрике

Значение индекса множественной корреляции лежит в пределах от 0 до 1 и должно быть больше или ранно максимальному парному индексу корреляции:

Примеры решения задач по эконометрике

Индекс множественной корреляции для уравнения в стандартизованном масштабе можно записать и виде

Примеры решения задач по эконометрике

При линейной зависимости коэффициент множественной корреляции можно определить через матрицу парных коэффициентов корреляции:

Примеры решения задач по эконометрике

где

Примеры решения задач по эконометрике

определитель матрицы парных коэффициентов корреляии;

Примеры решения задач по эконометрике

определитель матрицы межфакторной корреляции.

Частные коэффициенты (или индексы) корреляции, измеряющие влияние на у фактора Примеры решения задач по эконометрике при неизменном уровне других факторов, можно определить по формуле

Примеры решения задач по эконометрике

или по рекуррентной формуле:

Примеры решения задач по эконометрике

Частные коэффициенты корреляции изменяются в пределах от —1 до 1.

Качество построенной модели в целом оценивает коэффициент (индекс) детерминации. Коэффициент множественной детерминации рассчитывается как квадрат индекса множественной корреляции:

Примеры решения задач по эконометрике

Скорректированный индекс множественной детерминации содержит поправку на число степеней свободы и рассчитывается по формуле

Примеры решения задач по эконометрике

где Примеры решения задач по эконометрике — число наблюдений; Примеры решения задач по эконометрике— число факторов.

Значимость уравнения множественной регрессии в целом оценивается с помощью Примеры решения задач по эконометрике-критерия Фишера:

Примеры решения задач по эконометрике

Частный Примеры решения задач по эконометрике-критерий оценивает статистическую значимость присутствия каждого из факторов в уравнении. В общем виде для фактора Примеры решения задач по эконометрике частный Примеры решения задач по эконометрике-критерий определится как

Примеры решения задач по эконометрике

Оценка значимости коэффициентов чистой регрессии с помощью Примеры решения задач по эконометрике-критерия Стьюдента сводится к вычислению значения

Примеры решения задач по эконометрике

где Примеры решения задач по эконометрике — средняя квадратичсская ошибка коэффициента регрессии Примеры решения задач по эконометрике она может быть определена по следующей формуле:

Примеры решения задач по эконометрике

При построении уравнения множественной регрессии может возникнуть проблема мупьтиколлинеарности факторов, их тесной линейной связанности.

Считается, что две переменные явно коллинеарны, т.е. находятся между собой в линейной зависимости, если Примеры решения задач по эконометрике.

По величине парных коэффициентов корреляции обнаруживается лишь явная коллинеарность факторов. Наибольшие трудности в использовании аппарата множественной регрессии возникают при наличии мультиколлинеарности факторов. Чем сильнее мультикол-линеарность факторов, тем менее надежна оценка распределения суммы объясненной вариации по отдельным факторам с помощью метода наименьших квадратов.

Для оценки мультиколлинеарности факторов может использоваться определитель матрицы парных коэффициентов корреляции между факторами.

Если бы факторы не коррелировали между собой, то матрица парных коэффициентов корреляции между факторами была бы единичной матрицей, поскольку все недиагональные элементы Примеры решения задач по эконометрикеПримеры решения задач по эконометрике были бы равны нулю. Так, для включающего три объясняющих переменных уравнения

Примеры решения задач по эконометрике

матрица коэффициентов корреляции между факторами имела бы определитель, равный 1:

Примеры решения задач по эконометрике

так как

Примеры решения задач по эконометрике

Если же наоборот, между факторами существует полная линейная зависимость и все коэффициенты корреляции равны 1, то определитель такой матрицы равен 0:

Примеры решения задач по эконометрике

Чем ближе к 0 определитель матрицы межфакторной корреляции, тем сильнее мультиколлинеарность факторов и ненадежнее результаты множественной регрессии. И наоборот, чем ближе к 1 определитель матрицы межфакторной корреляции, тем меньше мультиколлинеарность факторов.

Проверка мультиколлинеарности факторов может быть проведена методом испытания гипотезы о независимости переменных

Примеры решения задач по эконометрике

Доказано, что величина

Примеры решения задач по эконометрике

имеет приближенное распределение

Примеры решения задач по эконометрике

степенями свободы. Если фактическое значение Примеры решения задач по эконометрике превосходит табличное (критическое) Примеры решения задач по эконометрике то гипотеза Примеры решения задач по эконометрике отклоняется. Это означает, что Примеры решения задач по эконометрике, недиагональные ненулевые коэффициенты корреляции указывают на коллинеарность факторов. Мультиколлинеарность считается доказанной.

Для применения МНК требуется, чтобы дисперсия остатков была гомоскедастичной. Это значит, что для каждого значения фактора Примеры решения задач по эконометрике остатки Примеры решения задач по эконометрике имеют одинаковую дисперсию. Если это условие не соблюдается, то имеет место гетероскедастичность.

При нарушении гомоскедастичности мы имеем неравенства

Примеры решения задач по эконометрике

При малом объеме выборки для оценки гетероскедастичности может использоваться метод Гольдфельда Кнандта. Основная идея теста Гольдфельда — Квандта состоит в следующем:

1) упорядочение и наблюдений по мере возрастания переменной Примеры решения задач по эконометрике;

2) исключение из рассмотрения Примеры решения задач по эконометрике центральных наблюдений; при этом Примеры решения задач по эконометрике, где Примеры решения задач по эконометрике — число оцениваемых параметров;

3) разделение совокупности из Примеры решения задач по эконометрике наблюдений на две группы (соответственно с малыми и с большими значениями фактора Примеры решения задач по эконометрике) и определение по каждой из групп ураннсний регрессии;

4) определение остаточной суммы киндратов для первой Примеры решения задач по эконометрике и второй Примеры решения задач по эконометрике групп и нахождение их отношения:

Примеры решения задач по эконометрике

При выполнении нулевой гипотезы о гомоскедастичности отношение Примеры решения задач по эконометрике будет удовлетворять Примеры решения задач по эконометрике-критерию со степенями свободы Примеры решения задач по эконометрике для каждой остаточной суммы квадратов. Чем больше величина Примеры решения задач по эконометрике превышает табличное значение Примеры решения задач по эконометрике-критерия, тем более нарушена предпосылка о равенстве дисперсий остаточных величин.

Уравнения множественной регрессии могут включать в качестве независимых переменных качественные признаки (например, профессия, пол, образование, климатические условия, отдельные регионы и т.д.). Чтобы ввести такие переменные в регрессионную модель, их необходимо упорядочить и присвоить им те или иные значения, т.е. качественные переменные преобразовать в количественные.

Такого вида сконструированные переменные принято в эконометрике называть фиктивными переменными. Например, включать в модель фактор «пол» в виде фиктивной переменной можно в следующем виде:

Примеры решения задач по эконометрике

Коэффициент регрессии при фиктивной переменной интерпретируется как среднее изменение зависимой переменной при переходе от одной категории (женский пол) к другой (мужской пол) при неизменных значениях остальных параметров. На основе Примеры решения задач по эконометрике-критерия Стьюдента делается вывод о значимости влияния фиктивной переменной, существенности расхождения между категориями.

Пример задачи №5

По 30 территориям России имеются данные, представленные в табл. 2.1.

Примеры решения задач по эконометрике

Требуется:

  1. Построить уравнение множественной регрессии в стандартизованной и естественной форме; рассчитать частные коэффициенты эластичности, сравнить их с Примеры решения задач по эконометрике и Примеры решения задач по эконометрике пояснить различия между ними.
  2. Рассчитать линейные коэффициенты частной корреляции и коэффициент множественной корреляции, сравнить их с линейными коэффициентами парной корреляции, пояснить различия между ними.
  3. Рассчитать общий и частные Примеры решения задач по эконометрике-критерии Фишера.

Решение:

Линейное уравнение множественной регрессии Примеры решения задач по эконометрике от Примеры решения задач по эконометрике и Примеры решения задач по эконометрике имеет вид:

Примеры решения задач по эконометрике

Для расчета его параметров применим метод стандартизации переменных и построим искомое уравнение в стандартизованном масштабе:

Примеры решения задач по эконометрике

Расчет Примеры решения задач по эконометрике-коэффициентов выполним по формулам

Примеры решения задач по эконометрике

Получим уравнение

Примеры решения задач по эконометрике

Для построения уравнения в естественной форме рассчитаем Примеры решения задач по эконометрике и Примеры решения задач по эконометрике, используя формулы для перехода от Примеры решения задач по эконометрике к Примеры решения задач по эконометрике;

Примеры решения задач по эконометрике

Значение а определим из соотношения

Примеры решения задач по эконометрике

Для характеристики относительной силы влияния Примеры решения задач по эконометрике и Примеры решения задач по эконометрике на Примеры решения задач по эконометрике рассчитаем средние коэффициенты эластичности:

Примеры решения задач по эконометрике

С увеличением средней заработной платы Примеры решения задач по эконометрике на 1% от ее среднего уровня средний душевой доход у возрастает на 1,02% от своего среднего уровня; при повышении среднего возраста безработного Примеры решения задач по эконометрике на 1% среднедушевой доход у снижается на 0,87% от своего среднего уровня. Очевидно, что сила влияния средней заработной платы Примеры решения задач по эконометрике на средний душевой доход у оказалась большей, чем сила влияния среднего возраста безработного Примеры решения задач по эконометрике. К аналогичным выводам о силе связи приходим при сравнении модулей значений Примеры решения задач по эконометрике и Примеры решения задач по эконометрике:

Примеры решения задач по эконометрике

Различия в силе влияния фактора на результат, полученные при сравнении Примеры решения задач по эконометрике и Примеры решения задач по эконометрике объясняются тем, что коэффициент эластичности исходит из соотношения средних:

Примеры решения задач по эконометрике

Примеры решения задач по эконометрике-коэффициент — из соотношения средних квадратических отклонений:

Примеры решения задач по эконометрике
  • Линейные коэффициенты частной корреляции здесь рассчитываются по рекуррентной формуле:
Примеры решения задач по эконометрике

Если сравнить значения коэффициентов парной и частной корреляции, то приходим к выводу, что из-за слабой межфакторной связи Примеры решения задач по эконометрике коэффициенты парной и частной корреляции отличаются незначительно: выводы о тесноте и направлении связи на основе коэффициентов парной и частной корреляции совпадают:

Примеры решения задач по эконометрике

Расчет линейного коэффициента множественной корреляции выполним с использованием коэффициентов Примеры решения задач по эконометрике и Примеры решения задач по эконометрике:

Примеры решения задач по эконометрике

Зависимость Примеры решения задач по эконометрике от Примеры решения задач по эконометрике и Примеры решения задач по эконометрике характеризуется как тесная, в которой 72% вариации среднего душевого дохода определяются вариацией учтенных в модели факторов: средней заработной платы и среднего возраста безработного. Прочие факторы, не включенные в модель, составляют соответственно 28% от общей вариации Примеры решения задач по эконометрике.

  • Общий Примеры решения задач по эконометрике-критерий проверяет гипотезу Примеры решения задач по эконометрике о статистической значимости уравнения регрессии и показателя тесноты связи Примеры решения задач по эконометрике:
Примеры решения задач по эконометрике

Сравнивая Примеры решения задач по эконометрике приходим к выводу о необходимости отклонить гипотезу Примеры решения задач по эконометрике, так как

Примеры решения задач по эконометрике

С вероятностью Примеры решения задач по эконометрике делаем заключение о статистической значимости уравнения в целом и показателя тесноты связи Примеры решения задач по эконометрике которые сформировались под неслучайным воздействием факторов Примеры решения задач по эконометрике и Примеры решения задач по эконометрике.

Частные Примеры решения задач по эконометрике-критерии — Примеры решения задач по эконометрике и Примеры решения задач по эконометрике оценивают статистическую значимость присутствия факторов Примеры решения задач по эконометрике и Примеры решения задач по эконометрике в уравнении множественной регрессии, оценивают целесообразность включения в уравнение одного фактора после другого фактора, т.е. Примеры решения задач по эконометрике оценивает целесообразность включения в уравнение фактора Примеры решения задач по эконометрике после того, как в него был включен фактор Примеры решения задач по эконометрике. Соответственно Примеры решения задач по эконометрике указывает на целесообразность включения в модель фактора Примеры решения задач по эконометрике после фактора Примеры решения задач по эконометрике:

Примеры решения задач по эконометрике

Сравнивая Примеры решения задач по эконометрике приходим к выводу о целесообразности включения в модель фактора Примеры решения задач по эконометрике после’ фактора Примеры решения задач по эконометрике, так как

Примеры решения задач по эконометрике

Гипотезу Примеры решения задач по эконометрике о несущественности прироста Примеры решения задач по эконометрике за счет включения дополнительного фактора Примеры решения задач по эконометрике отклоняем и приходим к выводу о статистически подтвержденной целесообразности включения фактора Примеры решения задач по эконометрике после фактора Примеры решения задач по эконометрике.

Целесообразность включения в модель фактора Примеры решения задач по эконометрике после фактора Примеры решения задач по эконометрике проверяет Примеры решения задач по эконометрике:

Примеры решения задач по эконометрике

Низкое значение Примеры решения задач по эконометрике (немногим больше 1) свидетельствует о статистической незначимости прироста Примеры решения задач по эконометрике за счет включения в модель фактора Примеры решения задач по эконометрике после фактора Примеры решения задач по эконометрике. Следовательно, подтверждается нулевая гипотеза Примеры решения задач по эконометрике нецелесообразности включения в модель фактора Примеры решения задач по эконометрике (средний возраст безработного). Это означает, что парная регрессионная модель зависимости среднего дохода от средней заработной платы является достаточно статистически значимой, надежной и что нет необходимости улучшать ее, включая дополнительный фактор Примеры решения задач по эконометрике (средний возраст безработного).

Пример задачи №6

По 20 территориям России изучаются следующие данные (табл. 2.2): зависимость среднегодового душевого дохода у (тыс. руб.) от доли занятых тяжелым физическим трудом в общей численности занятых Примеры решения задач по эконометрике (%) и от доли экономически активного населения в численности всего населения Примеры решения задач по эконометрике (%).

Примеры решения задач по эконометрике

Требуется:

  1. Составить таблицу дисперсионного анализа для проверки при уровне значимости Примеры решения задач по эконометрике статистической значимости уравнения множественной регрессии и его показателя тесноты связи.
  2. С помощью частных Примеры решения задач по эконометрике-критериев Фишера оценить, насколько целесообразно включение в уравнение множественной регрессии фактора Примеры решения задач по эконометрике после фактора Примеры решения задач по эконометрике и насколько целесообразно включение Примеры решения задач по эконометрике после Примеры решения задач по эконометрике.
  3. Оценить с помощью Примеры решения задач по эконометрике-критерия Стыодента статистическую значимость коэффициентов при переменных Примеры решения задач по эконометрике и Примеры решения задач по эконометрике множественного уравнения регрессии.

Решение:

  • Задача дисперсионного анализа состоит в проверке нулевой гипотезы Примеры решения задач по эконометрике о статистической незначимости уравнения регрессии в целом и показателя тесноты связи.

Анализ выполняется при сравнении фактического и табличного (критического) значений Примеры решения задач по эконометрике-критерия Фишера

Примеры решения задач по эконометрике

определяется из соотношения значений факторной и остаточной дисперсий, рассчитанных на одну степень свободы:

Примеры решения задач по эконометрике

где Примеры решения задач по эконометрике — число единиц совокупности;

Примеры решения задач по эконометрике — число факторов в уравнении линейной регрессии; Примеры решения задач по эконометрике — фактическое значение результативного признака; Примеры решения задач по эконометрике — расчетное значение результативного признака.

Результаты дисперсионного анализа представлены в табл. 2.3.

Примеры решения задач по эконометрике

Сравнивая Примеры решения задач по эконометрике приходим к выводу о необходимости отклонить гипотезу Примеры решения задач по эконометрике и сделать вывод о статистической значимости уравнения регрессии в целом и значения Примеры решения задач по эконометрике, так как они статистически надежны и сформировались под систематическим действием неслучайных причин. Вероятность того, что допускаются ошибки при отклонении нулевой гипотезы, не превышает 5%, и это является достаточно малой величиной.

Возможно эта страница вам будет полезна:

Заказать работу по эконометрике
  • Частный Примеры решения задач по эконометрике-критерий Фишера оценивает статистическую целесообразность включения фактора Примеры решения задач по эконометрике в модель после того, как в нее включен фактор Примеры решения задач по эконометрике. Частный Примеры решения задач по эконометрике-критерий Фишера строится как отношение прироста факторной дисперсии за счет дополнительно включенного фактора (на одну степень свободы) к остаточной дисперсии (на одну степень свободы), подсчитанной по модели с включенными факторами Примеры решения задач по эконометрике и Примеры решения задач по эконометрике:
Примеры решения задач по эконометрике

Результаты дисперсионного анализа представлены в табл. 2.4.

Примеры решения задач по эконометрике

Включение фактора Примеры решения задач по эконометрике после фактора Примеры решения задач по эконометрике оказалось статистически значимым и оправданным: прирост факторной дисперсии (в расчете на одну степень свободы) оказался существенным, т.е. следствием дополнительного включения в модель систематически действующего фактора Примеры решения задач по эконометрике так как

Примеры решения задач по эконометрике

Аналогично проверим целесообразность включения в модель дополнительного фактора Примеры решения задач по эконометрике после включенного ранее фактора Примеры решения задач по эконометрике. Расчет выполним с использованием показателей тесноты связи

Примеры решения задач по эконометрике
Примеры решения задач по эконометрике

В силу того что

Примеры решения задач по эконометрике

приходим к выводу, что включение Примеры решения задач по эконометрике после Примеры решения задач по эконометрике оказалось бесполезным: прирост факторной дисперсии в расчете на одну степень свободы был несуществен, статистически незначим, т.е. влияние Примеры решения задач по эконометрике не является устойчивым, систематическим. Вполне возможно было ограничиться построением линейного уравнения парной регрессии у от Примеры решения задач по эконометрике.

  • Оценка с помощью Примеры решения задач по эконометрике-критерия Стьюдента значимости коэффициентов Примеры решения задач по эконометрике и Примеры решения задач по эконометрике связана с сопоставлением их значений с величиной их случайных ошибок: Примеры решения задач по эконометрике и Примеры решения задач по эконометрике. Расчет значений случайных ошибок достаточно сложен и трудоёмок. Поэтому предлагается более простой способ: расчет значения Примеры решения задач по эконометрике-критерия Стьюдента для коэффициентов регрессии линейного уравнения как квадратного корня из соответствующего частного Примеры решения задач по эконометрике-критерия Фишера:
Примеры решения задач по эконометрике

Табличные (критические) значения Примеры решения задач по эконометрике-критерия Стьюдента зависят от принятого уровня значимости Примеры решения задач по эконометрике (обычно это 0,1; 0,05 или 0,01) и от числа степеней свободы Примеры решения задач по эконометрике, где Примеры решения задач по эконометрике — число единиц совокупности, Примеры решения задач по эконометрике — число факторов в уравнении.

В нашем примере при

Примеры решения задач по эконометрике

Сравнивая Примеры решения задач по эконометрике, приходим к выводу, что так как Примеры решения задач по эконометрикеПримеры решения задач по эконометрике коэффициент регрессии Примеры решения задач по эконометрике является статистически значимым, надежным, на него можно опираться в анализе и в прогнозе. Так как

Примеры решения задач по эконометрике

приходим к заключению, что величина Примеры решения задач по эконометрике является статистически незначимой, ненадежной в силу того, что она формируется преимущественно под воздействием случайных факторов. Еще раз подтверждается статистическая значимость влияния Примеры решения задач по эконометрике (доли занятых тяжелым физическим трудом) на у (среднедушевой доход) и ненадежность, незначимость влияния Примеры решения задач по эконометрике (доли экономически активного населения в численности всего населения).

Возможно эта страница вам будет полезна:

Лабораторная работа по эконометрике

Пример задачи №7

Зависимость спроса на свинину Примеры решения задач по эконометрике от цены на нее Примеры решения задач по эконометрике и от цены на говядину Примеры решения задач по эконометрике представлена уравнением

Примеры решения задач по эконометрике

Требуется:

  1. Представить данное уравнение в естественной форме (не в логарифмах).
  2. Оценить значимость параметров данного уравнения, если известно, что Примеры решения задач по эконометрике-критерий для параметра Примеры решения задач по эконометрике при Примеры решения задач по эконометрике составил 0,827, а для параметра Примеры решения задач по эконометрике при Примеры решения задач по эконометрике — 1,015.

Решение:

  • Представленное степенное уравнение множественной регрессии приводим к естественной форме путём потенцирования обеих частей уравнения:
Примеры решения задач по эконометрике

Значения коэффициентов регрессии Примеры решения задач по эконометрике и Примеры решения задач по эконометрике в степенной функции равны коэффициентам эластичности результата Примеры решения задач по эконометрике от Примеры решения задач по эконометрике и Примеры решения задач по эконометрике.

Примеры решения задач по эконометрике

Спрос на свинину Примеры решения задач по эконометрике сильнее связан с ценой на говядину — он увеличивается в среднем на 2,83% при росте цен на 1%. С ценой на свинину спрос на нее связан обратной зависимостью: с ростом цен на 1% потребление снижается в среднем на 0,21%.

  • Табличное значение Примеры решения задач по эконометрике-критерия для Примеры решения задач по эконометрике обычно лежит в интервале 2-3-в зависимости от степеней свободы. В данном примере
Примеры решения задач по эконометрике
  • Это весьма небольшие значения Примеры решения задач по эконометрике-критерия, которые свидетельствуют о случайной природе взаимосвязи, о статистической ненадежности всего уравнения, поэтому применять полученное уравнение для прогноза не рекомендуется.

Возможно эта страница вам будет полезна:

Помощь по эконометрике

Пример задачи №8

По 20 предприятиям региона (табл. 2.5) изучается зависимость выработки продукции на одного работника у (тыс. руб.) от ввода в действие новых основных фондов Примеры решения задач по эконометрике (% от стоимости фондов на конец года) и от удельного веса рабочих высокой квалификации в общей численности рабочих Примеры решения задач по эконометрике (%).

Примеры решения задач по эконометрике

Требуется:

  1. Оценить показатели вариации каждого признака и сделать вывод о возможностях применения МНК для их изучения.
  2. Проанализировать линейные коэффициенты парной и частной корреляции.
  3. Написать уравнение множественной регрессии, оценить значимость его параметров, пояснить их экономический смысл.
  4. С помощью Примеры решения задач по эконометрике-критерия Фишера оценить статистическую надежность уравнения регрессии и Примеры решения задач по эконометрике. Сравнить значения скорректированного и нескорректированного линейных коэффициентов множественной детерминации.
  5. С помощью частных Примеры решения задач по эконометрике-критериев Фишера оценить целесообразность включения в уравнение множественной регрессии фактора Примеры решения задач по эконометрике после Примеры решения задач по эконометрике и фактора Примеры решения задач по эконометрике после Примеры решения задач по эконометрике.
  6. Рассчитать средние частные коэффициенты эластичности и дать на их основе сравнительную оценку силы влияния факторов на результат.

Возможно эта страница вам будет полезна:

Решение задач по эконометрике в Excel

Реализация типовых задач в Excel

  1. Решение примера проведем с использованием ППП MS Excel и Statgraphics.

Решение с помощью ППП Excel

Сводную таблицу основных статистических характеристик для одного или нескольких массивов данных можно получить с помощью инструмента анализа данных Описательная статистика. Для этого выполните следующие шаги:

1) введите исходные данные или откройте существующий файл, содержащий анализируемые данные;

2) в главном меню выберите последовательно пункты Сервис / Анализ данных / Описательная статистика, после чего щелкните по кнопке ОК;

Примеры решения задач по эконометрике

3) заполните диалоговое окно ввода данных и параметров вывода (рис. 2.1):

Входной интервал — диапазон, содержащий анализируемые данные, это может быть одна или несколько строк (столбцов); Группирование — по столбцам или по строкам — необходимо указать дополнительно;

Метки — флажок, который указывает, содержит ли первая строка названия столбцов или нет;

Выходной интервал — достаточно указать левую верхнюю ячейку будущего диапазона;

Новый рабочий лист — можно задать произвольное имя нового листа.

Если необходимо получить дополнительную информацию Итоговой статистики, Уровня надежности, k-го наибольшего и наименьшего значений, установите соответствующие флажки в диалоговом окне. Щелкните по кнопке ОК.

Результаты вычисления соответствующих показателей для каждого признака представлены на рис. 2.2.

Примеры решения задач по эконометрике

Решение с помощью ППП Statgraphics

Для проведения многофакторного анализа в ППП Statgraphics используется пункт меню Multiple Variable Analysis. Для получения показателей описательной статистики необходимо проделать следующие операции:

1) ввести исходные данные или открыть существующий файл, содержащий анализируемые данные;

2) в главном меню выбрать Describe/Numeric Data/Multiple Variable Analysis;

3) заполнить диалоговое окно ввода данных (рис. 2.3). Ввести названия всех столбцов, значения которых вы хотите включить в анализ; щелкнуть по кнопке ОК;

Примеры решения задач по эконометрике

4) в окне табличных настроек поставить флажок напротив Summary Statistics (рис. 2.4). Итоговая статистика — показатели вариации -появится в отдельном окне.

Примеры решения задач по эконометрике

Для данных примера 4 результат применения функции Multiple Variable Analysis представлен на рис. 2.5.

Примеры решения задач по эконометрике

Сравнивая значения средних квадратических отклонений и средних величин и определяя коэффициенты вариации:

Примеры решения задач по эконометрике

приходим к выводу о повышенном уровне варьирования признаков, хотя и в допустимых пределах, не превышающих 35%. Совокупность предприятий однородна, и для ее изучения могут использоваться метод наименьших квадратов и вероятностные методы оценки статистических гипотез.

  • Значения линейных коэффициентов парной корреляции определяют тесноту попарно связанных переменных, использованных в данном уравнении множественной регрессии. Линейные коэффициенты частной корреляции оценивают тесноту связи значений двух переменных, исключая влияние всех других переменных, представленных в уравнении множественной регрессии.

Решение с помощью ППП Excel

К сожалению, в ППП MS Excel нет специального инструмента для расчета линейных коэффициентов частной корреляции. Матрицу парных коэффициентов корреляции переменных можно рассчитать, используя инструмент анализа данных Корреляция. Для этого:

1) в главном меню последовательно выберите пункты Сервис / Анализ данных / Корреляция. Щелкните по кнопке ОК;

2) заполните диалоговое окно ввода данных и параметров вывода (см. рис. 2.1);

3) результаты вычислений — матрица коэффициентов парной корреляции — представлены на рис. 2.6.

Примеры решения задач по эконометрике

Решение с помощью ППП Stat graphics

При проведении многофакторного анализа — Multiple Variable Analysis — вычисляются линейные коэффициенты парной корреляции и линейные коэффициенты частной корреляции. Последовательность операций описана в п.1 этого примера. Для отображения результатов вычисления на экране необходимо установить флажки напротив Correlations и Partial Correlations в окне табличных настроек (рис. 2.7).

Примеры решения задач по эконометрике

В результате получим матрицы коэффициентов парной и частной корреляции (рис. 2.8).

Примеры решения задач по эконометрике

Значения коэффициентов парной корреляции указывают на весьма тесную связь выработки у как с коэффициентом обновления основных фондов — Примеры решения задач по эконометрике, так и с долей рабочих высокой квалификации

Примеры решения задач по эконометрике

Но в то же время межфакторная связь Примеры решения задач по эконометрике весьма тесная и превышает тесноту связи Примеры решения задач по эконометрике с Примеры решения задач по эконометрике. В связи с этим для улучшения данной модели можно исключить из нее фактор Примеры решения задач по эконометрике как малоинформативный, недостаточно статистически надежный.

Коэффициенты частной корреляции дают более точную характеристику тесноты связи двух признаков, чем коэффициенты парной корреляции, так как очищают парную зависимость от взаимодействия данной пары признаков с другими признаками, представленными в модели. Наиболее тесно связаны Примеры решения задач по эконометрике и Примеры решения задач по эконометрике:

Примеры решения задач по эконометрике

связь Примеры решения задач по эконометрике и Примеры решения задач по эконометрике гораздо слабее:

Примеры решения задач по эконометрике

а межфакторная зависимость Примеры решения задач по эконометрике и Примеры решения задач по эконометрике выше, чем парная Примеры решения задач по эконометрике и Примеры решения задач по эконометрике:

Примеры решения задач по эконометрике

Все это приводит к выводу о необходимости исключить фактор Примеры решения задач по эконометрике — доля высококвалифицированных рабочих — из правой части уравнения множественной регрессии.

Если сравнить коэффициенты парной и частной корреляции, то можно увидеть, что из-за высокой межфакторной зависимости коэффициенты парной корреляции дают завышенные оценки тесноты связи:

Примеры решения задач по эконометрике

Именно по этой причине рекомендуется при наличии сильной коллинеарности (взаимосвязи) факторов исключать из исследования тот фактор, у которого теснота парной зависимости меньше, чем теснота межфакторной связи.

  1. Вычисление параметров линейного уравнения множественной регрессии.

Решение с помощью ППП Excel

Эта операция проводится с помощью инструмента анализа данных Регрессия. Она аналогична расчету параметров парной линейной регрессии, описанной в 1-м разделе практикума, только в отличие от парной регрессии в диалоговом окне при заполнении параметра входной интервал и следует указать не один столбец, а все столбцы, содержащие значения факторных признаков. Результаты анализа представлены на рис. 2.9.

Примеры решения задач по эконометрике

Для вычисления параметров множестнсшшП регрессии можно использовать процедуру Multiple Regression. Дни »нно:

1) введите исходные данные или откройте сущее i иун>щи11 файл;

2) в главном меню последовательно выберите Heinle / Multiple Regression;

3) заполните диалоговое окно ввода данных. II ноне Depended Variable введите название столбца, содержащею шичпш» зависимой переменной, в поле Independed Variable — нашими* i ишбцов, содержащих значения факторов. Щелкните по кнопке ОК

Результаты вычисления функции Multiple КсЦ1 гм1«ш появятся в отдельном окне (рис. 2.10).

По результатам вычислений составим урцниемн* множественной регрессии вида

Примеры решения задач по эконометрике

Значения случайных ошибок параметров Примеры решения задач по эконометрике с учетом округления:

Примеры решения задач по эконометрике
Примеры решения задач по эконометрике

Они показывают, какое значение данной характеристики сформировалось под влиянием случайных факторов. Эти значения используются для расчета Примеры решения задач по эконометрике-критерия С п.юдснта:

Примеры решения задач по эконометрике

Если значения Примеры решения задач по эконометрике-критерия больше 2-3, можно сделать вывод о существенности данного параметра, который формируется под воздействием неслучайных причин. Здесь статистически значимыми являются Примеры решения задач по эконометрике и Примеры решения задач по эконометрике, а величина Примеры решения задач по эконометрике сформировалась под воздействием случайных причин, поэтому фактор силу влияния которого оценивает Примеры решения задач по эконометрике, можно исключить как несущественно влияющий, неинформативный.

На это же указывает показатель вероятности случайных значений параметров регрессии: если а меньше принятого нами уровня (обычно 0,1; 0,05 или 0,01; это соответствует 10%; 5% или 1% вероятности), делают вывод о неслучайной природе данного значения параметра, т.е. о том, что он статистически значим и надежен. В противном случае принимается гипотеза о случайной природе значения коэффициентов уравнения. Здесь

Примеры решения задач по эконометрике

что позволяет рассматривать Примеры решения задач по эконометрике как неинформативный фактор и удалить его для улучшения данного уравнения.

Величина Примеры решения задач по эконометрике оценивает агрегированное влияние прочих (кроме учтенных в модели факторов Примеры решения задач по эконометрике и Примеры решения задач по эконометрике) факторов на результату.

Величины Примеры решения задач по эконометрике и Примеры решения задач по эконометрике указывают, что с увеличением Примеры решения задач по эконометрике и Примеры решения задач по эконометрике на единицу их значений результат увеличивается соответственно на 0,9459 и на 0,0856 млн руб. Сравнивать эти значения не следует, так как они зависят от единиц измерения каждого признака и потому несопоставимы между собой.

Оценку надежности уравнения регрессии в целом и показателя тесноты связи Примеры решения задач по эконометрике дает Примеры решения задач по эконометрике-критерий Фишера:

Примеры решения задач по эконометрике

По данным таблиц дисперсионного анализа, представленным на рис. 2.9 и 2.10, Примеры решения задач по эконометрике. Вероятность случайно получить такое значение Примеры решения задач по эконометрике-критерия составляет 0,0000, что не превышает допустимый уровень значимости 5%; об этом свидетельствует величина Примеры решения задач по эконометрике — значения из этих же таблиц. Следовательно, полученное значение не случайно, оно сформировалось под алюминием существенных факторов, т.е. подтверждается статистически значимость всего уравнения и показателя тесноты связи Примеры решения задач по эконометрике.

Значения скорректированного и нескорремирпианпого линейных коэффициентов множественной детерминации приведены на рис. 2.9 и 2.10 в рамках регрессионной статистики.

Нескорректированный коэффициент множественной детерминации

Примеры решения задач по эконометрике

оценивает долю вариации результата за счет представленных в уравнении фактором в общей вариации результата. Здесь эта доля составляет 94,7% и указывает на весьма высокую степень обусловленности вариации вариацией факторов, иными словами — на весьма теси> i факторов с результатом.

Скорректированный коэффициент множественной детерминации

Примеры решения задач по эконометрике

определяет тесноту связи с учетом степеней свободы общей и остаточной дисперсий. Он дает такую оценку тесноты связи, которая не зависит от числа факторов и потому может сравниваться по разным моделям с разным что ном факторов. Оба коэффициента указывают на весьма высокую (Ооиес 90%) детерминированность результата в модели факторами.

1) введите исходные данные или откройте существующий файл;

2) в главном меню последовательно выберите пункты Relate / Multiple Regression;

3) заполните диалоговое окно ввода данных. В поле Depended Variable введите название столбца, содержащего значения зависимой переменной, в поле Independed Variable — названия столбцов, содержащих значения факторов, в том порядке, в котором будет проводиться анализ целесообразности включения факторов в модель. Чтобы оценить статистическую значимость включения в модель фактора Примеры решения задач по эконометрике после фактора Примеры решения задач по эконометрике, сначала введите фактор Примеры решения задач по эконометрике затем Примеры решения задач по эконометрике. Для оценки обратного порядка включения факторов в модель Примеры решения задач по эконометрике после Примеры решения задач по эконометрике введите Примеры решения задач по эконометрике, затем Примеры решения задач по эконометрике. Щелкните по кнопке ОК;

4) в окне табличных настроек поставьте флажок напротив поля Conditional Sums of Squares.

Результаты вычисления показаны на рис. 2.11.

Примеры решения задач по эконометрике

Частный Примеры решения задач по эконометрике-критерий — Примеры решения задач по эконометрике показывает статистическую значимость включения фактора Примеры решения задач по эконометрике в модель после того, как в нее включен фактор Примеры решения задач по эконометрике.

Примеры решения задач по эконометрике = 2 . Вероятность случайной природы его значения (Примеры решения задач по эконометрике-значение = 0,1750) составляет 17,5% против принятого уровня значимости Примеры решения задач по эконометрике (5%). Следовательно, включение в модель фактора Примеры решения задач по эконометрике — доля высококвалифицированных рабочих — после того, как в уравнение включен фактор Примеры решения задач по эконометрике — коэффициент обновления основных фондов — статистически нецелесообразно: прирост факторной дисперсии за счет дополнительного признака Примеры решения задач по эконометрике оказывается незначимым, несущественным; фактор Примеры решения задач по эконометрике включать в уравнение после фактора Примеры решения задач по эконометрике не следует.

Если поменять первоначальный порядок включения факторов в модель и рассмотреть вариант включения Примеры решения задач по эконометрике после Примеры решения задач по эконометрике, то результат расчета частного Примеры решения задач по эконометрике-критерия для Примеры решения задач по эконометрике будет иным.

Примеры решения задач по эконометрике

Вероятность его случайного формирования составила 0,04%, это значительно меньше принятого стандарта Примеры решения задач по эконометрике (5%). Следовательно, значение частного Примеры решения задач по эконометрике-критерия для дополнительно включенного фактора Примеры решения задач по эконометрике не случайно, является статистически значимым, надежным, достоверным: прирост факторной дисперсии за счет дополнительного фактора Примеры решения задач по эконометрике является существенным. Фактор Примеры решения задач по эконометрике должен присутствовать в уравнении, в том числе в варианте, когда он дополнительно включается после фактора Примеры решения задач по эконометрике.

Общий вывод состоит в том, что множественная модель с факторами Примеры решения задач по эконометрике и Примеры решения задач по эконометрике с

Примеры решения задач по эконометрике

содержит неинформативный фактор Примеры решения задач по эконометрике. Если исключить фактор Примеры решения задач по эконометрике, то можно (ограничиться уравнением парной регрессии:

Примеры решения задач по эконометрике

более простым, хорошо детерминированным, ириголным для анализа и для прогноза.

  1. Средние частные коэффициенты эластичности показывают, на сколько процентов от значения своей средней изменяется результат при изменении фактора Примеры решения задач по эконометрике на 1% от своей средней Примеры решения задач по эконометрике и

при фиксированном воздействии на у всех прочих факторов, включенных в уравнение регрессии. Для линейной зависимости

Примеры решения задач по эконометрике

где Примеры решения задач по эконометрике — коэффициент регрессии при Примеры решения задач по эконометрике в уравнении множественной регрессии. Здесь

Примеры решения задач по эконометрике

По значениям частных коэффициентов эластичности можно сделать вывод о более сильном влиянии на результат у признака фактора Примеры решения задач по эконометрике, чем признака фактора Примеры решения задач по эконометрике:0,6% против 0,2%.

Возможно эта страница вам будет полезна:

Системы эконометрических уравнений

Система эконометрических уравнений

Сложные экономические процессы описывают с помощью системы взаимосвязанных (одновременных) уравнений.

Различают несколько видов систем уравнений: • система независимых уравнений — когда каждая зависимая переменная Примеры решения задач по эконометрике рассматривается как функция одного и того же набора факторов Примеры решения задач по эконометрике:

Примеры решения задач по эконометрике

Для решения этой системы и нахождения ее параметров используется метод наименьших квадратов;

• система рекурсивных уравнений — когда зависимая переменная Примеры решения задач по эконометрике одного уравнения выступает в виде фактора Примеры решения задач по эконометрике в другом уравнении:

Примеры решения задач по эконометрике

Для решения этой системы и нахождения ее параметров используется метод наименьших квадратов;
• система взаимосвязанных (совместных) уравнений — когда одни и те же зависимые переменные в одних уравнениях входят в левую часть, а в других — в правую:

Примеры решения задач по эконометрике

Такая система уравнений называется структурной формой модели.

Эндогенные переменные — взаимозависимые переменные, которые определяются внутри модели (системы) Примеры решения задач по эконометрике.

Экзогенные переменные — независимые переменные, которые определяются вне системы Примеры решения задач по эконометрике.

Предопределенные переменные — экзогенные и лаговые (за предыдущие моменты времени) эндогенные переменные системы.

Коэффициенты Примеры решения задач по эконометрике и Примеры решения задач по эконометрике при переменных — структурные коэффициенты модели.

Система линейных функций эндогенных переменных от всех предопределенных переменных системы — приведенная форма модели.

Примеры решения задач по эконометрике

где Примеры решения задач по эконометрике — коэффициенты приведенной формы модели.
Необходимое условие идентификации — выполнение счетного правила:

Примеры решения задач по эконометрике — уравнение идентифицируемо;

Примеры решения задач по эконометрике — уравнение неидентифицируемо;

Примеры решения задач по эконометрике — уравнение сверхидентифицируемо,

где Примеры решения задач по эконометрике — число эндогенных переменных в уравнении,

Примеры решения задач по эконометрике — число предопределенных переменных, отсутствующих в уравнении, но присутствующих в системе.

Достаточное условие идентификации — определитель матрицы, составленной из коэффициентов при переменных, отсутствующих в исследуемом уравнении, не равен нулю, и ранг этой матрицы не менее числа эндогенных переменных системы без единицы.

Для решения идентифицируемого уравнения применяется косвенный метод наименьших квадратов, для решения сверхидентифицированных — двухшаговый метод наименьших квадратов.

Косвенный МНК состоит в следующем:

• составляют приведенную форму модели и определяют численные значения параметров каждого ее уравнения обычным МНК;

• путем алгебраических преобразований переходят от приведенной формы к уравнениям структурной формы модели, получая тем самым численные оценки структурных параметров.

Двухшаговый МНК заключается в следующем:

• составляют приведенную форму модели и определяют численные значения параметров каждого ее уравнения обычным МНК;

• выявляют эндогенные переменные, находящиеся в правой части структурного уравнения, параметры которого определяют двухша-говым МНК, и находят расчетные значения по соответствующим уравнениям приведенной формы модели;

• обычным МНК определяют параметры структурного уравнения, используя в качестве исходных данных фактические значения предопределенных переменных и расчетные значения эндогенных переменных, стоящих в правой части данного структурного уравнения.

Пример задачи №9

Требуется:

  • Оценить следующую структурную модель на идентификацию:
Примеры решения задач по эконометрике
  • Исходя из приведенной формы модели уравнений
Примеры решения задач по эконометрике

найти структурные коэффициенты модели.

Решение:

  • Модель имеет три эндогенные Примеры решения задач по эконометрике и три экзогенные Примеры решения задач по эконометрикеПримеры решения задач по эконометрике переменные.

Проверим каждое уравнение системы на необходимое (Н) и достаточное (Д) условия идентификации.

Первое уравнение. Н: эндогенных переменных — Примеры решения задач по эконометрике, отсутствующих экзогенных — Примеры решения задач по эконометрике. Выполняется необходимое равенство: 2 = 1 + 1, следовательно, уравнение точно идентифицируемо.

Д: в первом уравнений отсутствуют Примеры решения задач по эконометрике и Примеры решения задач по эконометрике. Построим матрицу из коэффициентов при них в других уравнениях системы:

Примеры решения задач по эконометрике

Определитель матрицы не равен 0, ранг матрицы равен 2; следовательно, выполняется достаточное условие идентификации, и первое уравнение точно идентифицируемо.

Второе уравнение.

Н: эндогенных переменных — Примеры решения задач по эконометрике, отсутствующих экзогенных — Примеры решения задач по эконометрике

Выполняется необходимое равенство: 3 = 2+ 1, следовательно, уравнение точно идентифицируемо.

Д: во втором уравнении отсутствуют Примеры решения задач по эконометрике и Примеры решения задач по эконометрике. Построим матрицу из коэффициентов при них в других уравнениях системы:

Примеры решения задач по эконометрике

Определитель матрицы не равен 0, ранг матрицы равен 2, следовательно, выполняется достаточное условие идентификации, и второе уравнение точно идентифицируемо.

Третье уравнение.

Н: эндогенных переменных — Примеры решения задач по эконометрике, отсутствующих экзогенных — Примеры решения задач по эконометрике.

Выполняется необходимое равенство: 2=1 + 1, следовательно, уравнение точно идентифицируемо.

Д: в третьем уравнении отсутствуют Примеры решения задач по эконометрике и Примеры решения задач по эконометрике. Построим матрицу из коэффициентов при них в других уравнениях системы:

Примеры решения задач по эконометрике

Определитель матрицы не равен 0, ранг матрицы равен 2, следовательно, выполняется достаточное условие идентификации, и третье уравнение точно идентифицируемо.

Следовательно, исследуемая система точно идентифицируема и может быть решена косвенным методом наименьших квадратов.

  1. Вычислим структурные коэффициенты модели:

1)из третьего уравнения приведенной формы выразим Примеры решения задач по эконометрике (так как его нет в первом уравнении структурной формы):

Примеры решения задач по эконометрике

Данное выражение содержит переменные Примеры решения задач по эконометрике которые нужны для первого уравнения структурной формы модели (СФМ). Подставим полученное выражение Примеры решения задач по эконометрике в первое уравнение приведенной формы модели (ПФМ):

Примеры решения задач по эконометрике

2) во втором уравнении СФМ нет переменных Примеры решения задач по эконометрике и Примеры решения задач по эконометрике. Структурные параметры второго уравнения СФМ можно будет определить в два этапа:

Первый этап: выразим Примеры решения задач по эконометрике в данном случае из первого или третьего уравнения ПФМ. Например, из первого уравнения:

Примеры решения задач по эконометрике

Подстановка данного выражения во второе уравнение ПФМ не решило бы задачу до конца, так как в выражении присутствует Примеры решения задач по эконометрике, которого нет в СФМ.

Выразим Примеры решения задач по эконометрике из третьего уравнения ПФМ:

Примеры решения задач по эконометрике

Подставим его в выражение Примеры решения задач по эконометрике:

Примеры решения задач по эконометрике

Второй этап: аналогично, чтобы выразить Примеры решения задач по эконометрике через искомые Примеры решения задач по эконометрике и Примеры решения задач по эконометрике и Примеры решения задач по эконометрике, заменим в выражении Примеры решения задач по эконометрике значение Примеры решения задач по эконометрике на полученное из первого уравнения ПФМ:

Примеры решения задач по эконометрике

Следовательно,

Примеры решения задач по эконометрике

Подставим полученные Примеры решения задач по эконометрике и Примеры решения задач по эконометрике во второе уравнение ПФМ:

Примеры решения задач по эконометрике

Это уравнение можно получить из ПФМ иным путем. Суммируя все уравнения, получим

Примеры решения задач по эконометрике

Далее из первого и второго уравнений ПФМ исключим домножив первое уравнение на 3, а второе — на (-2) и просуммировав их:

Примеры решения задач по эконометрике

Затем аналогичным путем из полученных уравнений исключаем Примеры решения задач по эконометрике, а именно:

Примеры решения задач по эконометрике

3) из второго уравнения ПФМ выразим Примеры решения задач по эконометрике, так как его нет в третьем уравнении СФМ:

Примеры решения задач по эконометрике

Подставим полученное выражение в третье уравнение ПФМ:

Примеры решения задач по эконометрике

Таким образом, СФМ примет вид

Примеры решения задач по эконометрике

Пример задачи №10

Изучается модель вида

Примеры решения задач по эконометрике

где Примеры решения задач по эконометрике — валовой национальный доход;

Примеры решения задач по эконометрике — валовой национальный доход предшествующего года;

Примеры решения задач по эконометрике — личное потребление;

Примеры решения задач по эконометрике — конечный спрос (помимо личного потребления);

Примеры решения задач по эконометрике — случайные составляющие.
Информация за девять лет о приростах всех показателей дана в табл. 3.1*.

Примеры решения задач по эконометрике

Для данной модели была получена система приведенных уравнений:

Примеры решения задач по эконометрике

Требуется:

  1. Провести идентификацию модели.
  2. Рассчитать параметры первого уравнения структурной модели.

Решение:

В данной модели две эндогенные переменные ( и ) и две экзогенные переменные ( и ). Второе уравнение точно идентифицировано, так как содержит две эндогенные переменные и не содержит одну экзогенную переменную из системы. Иными словами, для второго уравнения имеем по счетному правилу идентификации равенство: 2=1 + 1.

Первое уравнение сверхидентифицировано, так как в нем на параметры при Примеры решения задач по эконометрике и Примеры решения задач по эконометрике наложено ограничение: они должны бьггь равны. В этом уравнении содержится одна эндогенная переменная Примеры решения задач по эконометрике. Переменная Примеры решения задач по эконометрике в данном уравнении не рассматривается как эндогенная, так как она участвует в уравнении не самостоятельно, а вместе с переменной Примеры решения задач по эконометрике. В данном уравнении отсутствует одна экзогенная переменная, имеющаяся в системе. По счетному правилу идентификации получаем: 1 + 1 = 2: Примеры решения задач по эконометрике + 1 > Н. Это больше, чем число эндогенных переменных в данном уравнении, следовательно, система сверх-идентифицирована.

  • Для определения параметров сверхидентифицированной модели используется двухшаговый метод наименьших квадратов.

Шаг 1. На основе системы приведенных уравнений по точно идентифицированному второму уравнению определим теоретические значения эндогенной переменной Примеры решения задач по эконометрике. Для этого в приведенное уравнение

Примеры решения задач по эконометрике

подставим значения Примеры решения задач по эконометрике и Примеры решения задач по эконометрике, имеющиеся в условии задачи. Получим:

Примеры решения задач по эконометрике

Шаг 2. По сверхидентифицированному уравнению структурной формы модели заменяем фактические значения Примеры решения задач по эконометрике на теоретические Примеры решения задач по эконометрике и рассчитываем новую переменную Примеры решения задач по эконометрике + Примеры решения задач по эконометрике (табл. 3.2).

Примеры решения задач по эконометрике

Далее к сверхидентифицированному уравнению применяется метод наименьших квадратов. Обозначим новую переменную Примеры решения задач по эконометрике + Примеры решения задач по эконометрике через Примеры решения задач по эконометрике. Решаем уравнение

Примеры решения задач по эконометрике

Система нормальных уравнений составит:

Примеры решения задач по эконометрике

Итак, первое уравнение структурной модели будет таким:

Примеры решения задач по эконометрике

Пример задачи №11

Имеются данные за 1990-1994 гг. (табл. 3.3).

Примеры решения задач по эконометрике

Требуется: Построить модель вида

Примеры решения задач по эконометрике

рассчитав соответствующие структурные коэффициенты.

Решение:

Система одновременных уравнений с двумя эндогенными и двумя экзогенными переменными имеет вид

Примеры решения задач по эконометрике

В каждом уравнении две эндогенные и одна отсутствующая экзогенная переменная из имеющихся в системе. Для каждого уравнения данной системы действует счетное правило 2=1 + 1. Это означает, что каждое уравнение и система в целом идентифицированы.

Для определения параметров такой системы применяется косвенный метод наименьших квадратов.

С этой целью структурная форма модели преобразуется в приведенную форму:

Примеры решения задач по эконометрике

в которой коэффициенты при Примеры решения задач по эконометрике определяются методом наименьших квадратов.

Для нахождения значений Примеры решения задач по эконометрике и Примеры решения задач по эконометрике запишем систему нормальных уравнений:

Примеры решения задач по эконометрике

При ее решении предполагается, что Примеры решения задач по эконометрике и Примеры решения задач по эконометрике выражены через отклонения от средних уровней, т. е. матрица исходных данных составит:

Примеры решения задач по эконометрике

Применительно к ней необходимые суммы оказываются следующими:

Примеры решения задач по эконометрике

Система нормальных уравнений составит:

Примеры решения задач по эконометрике

Решая ее, получим:

Примеры решения задач по эконометрике

Итак, имеем

Примеры решения задач по эконометрике

Аналогично строим систему нормальных уравнений для определения коэффициентов Примеры решения задач по эконометрике и Примеры решения задач по эконометрике:

Примеры решения задач по эконометрике

Следовательно,

Примеры решения задач по эконометрике

тогда второе уравнение примет вид

Примеры решения задач по эконометрике

Приведенная форма модели имеет вид

Примеры решения задач по эконометрике

Из приведенной формы модели определяем коэффициенты структурной модели:

Примеры решения задач по эконометрике

Итак, структурная форма модели имеет вид

Примеры решения задач по эконометрике

Пример задачи №12

Рассматривается следующая модель:

Примеры решения задач по эконометрике

где

Примеры решения задач по эконометрике

Требуется:

  1. В предположении, что имеются временные ряды данных по всем переменным модели, предложите способ оценки ее параметров.
  2. Как изменится ваш ответ на вопрос п. 1, если из модели исключить тождество дохода?

Решение:

  1. Модель представляет собой систему одновременных уравнений. Для ответа на вопрос о способе оценки параметров модели проверим каждое ее уравнение на идентификацию.

Модель включает четыре эндогенные переменные Примеры решения задач по эконометрике и четыре предопределенные переменные (две экзогенные переменные —Примеры решения задач по эконометрике и Примеры решения задач по эконометрике и две лаговые эндогенные переменные — Примеры решения задач по эконометрике и Примеры решения задач по эконометрике).

Проверим необходимое условие идентификации для уравнений модели уравнение.

Это уравнение включает две эндогенные переменные Примеры решения задач по эконометрике и одну предопределенную переменную Примеры решения задач по эконометрике. Следовательно, число предопределенных переменных, не входящих в это уравнение, плюс 1, больше числа эндогенных переменных, входящих в уравнение: 3 + 1 > 2. Уравнение сверх идентифицировано.

II уравнение.

Уравнение II включает две эндогенные переменные, Примеры решения задач по эконометрике и не включает три предопределенные переменные. Как и I уравнение, оно сверхидентифицировано.

III уравнение.

Уравнение III тоже включает две эндогенные переменные и не включает три предопределенные переменные. Это уравнение сверхидентифицировано.

IV уравнение.

Уравнение IV представляет собой тождество, параметры которого известны. Необходимости в его идентификации нет.

Проверим для каждого из уравнений достаточное условие идентификации. Для этого составим матрицу коэффициентов при переменных модели:

Примеры решения задач по эконометрике

В соответствии с достаточным условием идентификации определитель матрицы коэффициентов при переменных, не входящих в исследуемое уравнение, не должен быть равен нулю, а ранг матрицы должен быть равен числу эндогенных переменных модели минус 1, т.е. 4-1=3.

I уравнение.

Матрица коэффициентов при переменных, не входящих в уравнение, имеет вид

Примеры решения задач по эконометрике

Ее ранг равен 3, так как определитель квадратной подматрицы 3×3 этой матрицы не равен нулю:

Примеры решения задач по эконометрике

Достаточное условие идентификации для I уравнения выполняется.

II уравнение.

Выпишем матрицу коэффициентов при переменных, не входящих в уравнение:

Примеры решения задач по эконометрике

Ее ранг равен трем, так как определитель квадратной подматрицы 3 х 3 этой матрицы не равен нулю:

Примеры решения задач по эконометрике

Достаточное условие идентификации для II уравнения выполняется.

Ill уравнение.

Выпишем матрицу коэффициентов при переменных, не входящих в уравнение:

Примеры решения задач по эконометрике

Ее ранг равен трем, так как определитель квадратной подматрицы 3 х 3 этой матрицы не равен нулю:

Примеры решения задач по эконометрике

Достаточное условие идентификации для III уравнения выполняется.

Таким образом, все уравнения модели сверхидентифицированы. Для оценки параметров каждого из уравнений будем применять двухшаговый МНК.

Шаг 1. Запишем приведенную форму модели в общем виде:

Примеры решения задач по эконометрике

где Примеры решения задач по эконометрике — случайные ошибки.

Определим параметры каждого из приведенных выше уравнений в отдельности обычным МНК. Затем найдем расчетные значения

эндогенных переменных Примеры решения задач по эконометрике, используемых в правой части структурной модели, подставляя в каждое уравнение приведенной формы соответствующее значение предопределенных переменных.

Шаг 2. В исходных структурных уравнениях заменим эндогенные переменные, выступающие в качестве факторных признаков, их расчетными значениями:

Примеры решения задач по эконометрике

Применяя к каждому из полученных уравнений в отдельности обычный МНК, определим структурные параметры

Примеры решения задач по эконометрике
Примеры решения задач по эконометрике

Если из модели исключить тождество дохода, число предопределенных переменных модели уменьшится на 1 (из модели будет исключена переменная Примеры решения задач по эконометрике). Число эндогенных переменных модели также снизится на единицу — переменная Примеры решения задач по эконометрике станет экзогенной. В правых частях функции потребления и функции денежного рынка будут находиться только предопределенные переменные. Функция инвестиций постулирует зависимость эндогенной переменной Примеры решения задач по эконометрике от эндогенной переменной Примеры решения задач по эконометрике (которая зависит только от предопределенных переменных) и предопределенной переменной Примеры решения задач по эконометрике. Таким образом, мы получим рекурсивную систему. Ее параметры можно оценивать обычным МНК, и нет необходимости исследования системы уравнения на идентификацию.

Временные ряды в эконометрических исследованиях

Модели, построенные по данным, характеризующим один объект за ряд последовательных моментов (периодов), называются моделями временных рядов.

Временной ряд — это совокупность значений какого-либо показателя за несколько последовательных моментов или периодов.

Каждый уровень временного ряда формируется из трендовой Примеры решения задач по эконометрике, циклической Примеры решения задач по эконометрике и случайной Примеры решения задач по эконометрике компонент.

Модели, в которых временной ряд представлен как сумма перечисленных компонент, — аддитивные модели, как произведение -мультипликативные модели временного ряда. Аддитивная модель имеет вид:

Примеры решения задач по эконометрике

мультипликативная модель:

Примеры решения задач по эконометрике

Построение аддитивной и мультипликативной моделей сводится к расчету значений Примеры решения задач по эконометрике для каждого уровня ряда. Построение модели включает следующие шаги:

1) выравнивание исходного ряда методом скользящей средней;

2) расчет значений сезонной компоненты Примеры решения задач по эконометрике;

3) устранение сезонной компоненты из исходных уровней ряда и получение выровненных данных в аддитивной Примеры решения задач по эконометрике или в мультипликативной Примеры решения задач по эконометрике модели;

4) аналитическое выравнивание уровней Примеры решения задач по эконометрике или Примеры решения задач по эконометрике и расчет значений Т с использованием полученного уравнения тренда;

5) расчет полученных по модели значений Примеры решения задач по эконометрике или Примеры решения задач по эконометрике;

6) расчет абсолютных и/или относительных ошибок.

Автокорреляция уровней ряда — это корреляционная зависимость между последовательными уровнями временного ряда:

Примеры решения задач по эконометрике

где

Примеры решения задач по эконометрике

коэффициент автокорреляции уровней ряда первого порядка;

Примеры решения задач по эконометрике

где

Примеры решения задач по эконометрике

коэффициент автокорреляции уровней ряда второго порядка.

Формулы для расчета коэффициентов автокорреляции старших порядков легко получить из формулы линейного коэффициента корреляции.

Последовательность коэффициентов автокорреляции уровней первого, второго и т.д. порядков называют автокорреляционной функцией временного ряда, а график зависимости ее значений от величины лага (порядка коэффициента автокорреляции) — коррело-граммой.

Построение аналитической функции для моделирования тенденции (тренда) временного ряда называют аналитическим выравниванием временного ряда. Для этого чаще всего применяются следующие функции:

• линейная Примеры решения задач по эконометрике

• гипербола Примеры решения задач по эконометрике

• экспонента Примеры решения задач по эконометрике

• степенная функция Примеры решения задач по эконометрике

• парабола второго и более высоких порядков

Примеры решения задач по эконометрике

Параметры трендов определяются обычным МНК, в качестве независимой переменной выступает время Примеры решения задач по эконометрике, а в качестве зависимой переменной — фактические уровни временного ряда Примеры решения задач по эконометрике. Критерием отбора наилучшей формы тренда является наибольшее значение скорректированного коэффициента детерминации Примеры решения задач по эконометрике.

При построении моделей регрессии по временным рядам для устранения тенденции используются следующие методы.

Метод отклонений от тренда предполагает вычисление трендовых значений для каждого временного ряда модели, например Примеры решения задач по эконометрике и Примеры решения задач по эконометрике расчет отклонений от трендов:

Примеры решения задач по эконометрике

Для дальнейшего анализа используют не исходные данные, а отклонения от тренда.

Метод последовательных разностей заключается в следующем: если ряд содержит линейный тренд, тогда исходные данные заменяются первыми разностями:

Примеры решения задач по эконометрике

если параболический тренд — вторыми разностями:

Примеры решения задач по эконометрике

В случае экспоненциального и степенного тренда метод последовательных разностей применяется к логарифмам исходных данных.

Модель, включающая фактор времени, имеет вид

Примеры решения задач по эконометрике

Параметры а и b этой модели определяются обычным МНК.

Автокорреляция в остатках — корреляционная зависимость между значениями остатков Примеры решения задач по эконометрике за текущий и предыдущие моменты времени.

Для определения автокорреляции остатков используют критерий Дарвина — Уотсона и расчет величины:

Примеры решения задач по эконометрике

Коэффициент автокорреляции остатков первого порядка определяется по формуле

Примеры решения задач по эконометрике

Критерий Дарбина — Уотсона и коэффициент автокорреляции остатков первого порядка связаны соотношением

Примеры решения задач по эконометрике

Эконометрические модели, содержащие не только текущие, но и лаговые значения факторных переменных, называются моделями с распределенным лагом.

Модель с распределенным лагом в предположении, что максимальная величина лага конечна, имеет вид

Примеры решения задач по эконометрике

Коэффициент регрессии Примеры решения задач по эконометрике при переменной Примеры решения задач по эконометрике характеризует среднее абсолютное изменение Примеры решения задач по эконометрике при изменении Примеры решения задач по эконометрике на 1 ед. своего измерения в некоторый фиксированный момент времени Примеры решения задач по эконометрике, без учета воздействия лаговых значений фактора Примеры решения задач по эконометрике. Этот коэффициент называют краткосрочным мультипликатором.

В момент Примеры решения задач по эконометрике воздействие факторной переменной Примеры решения задач по эконометрике на результат Примеры решения задач по эконометрике составит Примеры решения задач по эконометрике условных единиц; в момент времени Примеры решения задач по эконометрике воздействие можно охарактеризовать суммой Примеры решения задач по эконометрике и т.д. Эти суммы называют промежуточными мультипликаторами. Для максимального лага Примеры решения задач по эконометрике воздействие фактора на результат описывается суммой Примеры решения задач по эконометрике которая называется долгосрочным мультипликатором.

Величины

Примеры решения задач по эконометрике

называются относительными коэффициентами модели с распределенным лагом. Если все коэффициенты Примеры решения задач по эконометрике имеют одинаковые знаки, то для любого Примеры решения задач по эконометрике

Примеры решения задач по эконометрике

Величина среднего лага модели множественной регрессии определяется по формуле средней арифметической взвешенной:

Примеры решения задач по эконометрике

и представляет собой средний период, в течение которого будет происходить изменение результата под воздействием изменения фактора в момент Примеры решения задач по эконометрике.

Медианный лаг — это период, в течение которого с момента времени Примеры решения задач по эконометрике будет реализована половина общего воздействия фактора на результат:

Примеры решения задач по эконометрике

где Примеры решения задач по эконометрике — медианный лаг.

Оценку параметров моделей с распределенными лагами можно проводить согласно одному из двух методов: методу Койка или методу Алмон.

В распределении Койка делается предположение, что коэффициенты при лаговых значениях объясняющей переменной убывают в геометрической прогрессии:

Примеры решения задач по эконометрике

Уравнение регрессии преобразуется к виду

Примеры решения задач по эконометрике

После несложных преобразований получаем уравнение, оценки параметров которого приводят к оценкам параметров исходного уравнения.

В методе Алмон предполагается, что веса текущих и лаговых значений объясняющих переменных подчиняются полиномиальному распределению:

Примеры решения задач по эконометрике

Уравнение регрессии примет вид

Примеры решения задач по эконометрике

Расчет параметров модели с распределенным лагом методом Алмон проводится по следующей схеме:

1) устанавливается максимальная величина лага Примеры решения задач по эконометрике;

2) определяется степень полинома Примеры решения задач по эконометрике, описывающего структуру лага;

3) рассчитываются значения переменных Примеры решения задач по эконометрике;

4) определяются параметры уравнения линейной регрессии Примеры решения задач по эконометрике от Примеры решения задач по эконометрике;

5) рассчитываются параметры исходной модели с распределенным лагом.

Модели, содержащие в качестве факторов лаговые значения зависимой переменной, называются моделями авторегрессии, например:

Примеры решения задач по эконометрике

Как и в модели с распределенным лагом, Примеры решения задач по эконометрике в этой модели характеризует краткосрочное изменение Примеры решения задач по эконометрике под воздействием изменения Примеры решения задач по эконометрике на 1 ед. Долгосрочный мультипликатор в модели авторегрессии рассчитывается как сумма краткосрочного и промежуточных мультипликаторов:

Примеры решения задач по эконометрике

Отметим, что такая интерпретация коэффициентов модели авторегрессии и расчет долгосрочного мультипликатора основаны на предпосылке о наличии бесконечного лага в воздействии текущего значения зависимой переменной на ее будущие значения.

Пример задачи №13

По данным за 18 месяцев построено уравнение регрессии зависимости прибыли предприятия Примеры решения задач по эконометрике (млн руб.) от цен на сырье Примеры решения задач по эконометрике (тыс. руб. за 1 т) и производительности труда Примеры решения задач по эконометрике (ед. продукции на 1 работника):

Примеры решения задач по эконометрике

При анализе остаточных величин были использованы значения, приведенные в табл. 4.1.

Примеры решения задач по эконометрике

Требуется:

  1. По трем позициям рассчитать Примеры решения задач по эконометрике
  2. Рассчитать критерий Дарбина — Уотсона.
  3. Оценить полученный результат при 5%-ном уровне значимости.
  4. Указать, пригодно ли уравнение для прогноза.

Решение:

  1. Примеры решения задач по эконометрике определяется путем подстановки фактических значений Примеры решения задач по эконометрике и Примеры решения задач по эконометрике в уравнение регрессии:
Примеры решения задач по эконометрике

Остатки Примеры решения задач по эконометрике рассчитываются по формуле

Примеры решения задач по эконометрике

Следовательно,

Примеры решения задач по эконометрике

Примеры решения задач по эконометрике — те же значения, что и Примеры решения задач по эконометрике, но со сдвигом на один месяц. Результаты вычислений оформим в виде табл. 4.2.

Примеры решения задач по эконометрике
  • Критерий Дарбина — Уотсона рассчитывается по формуле
Примеры решения задач по эконометрике
  • Фактическое значение Примеры решения задач по эконометрике сравниваем с табличными значениями при 5%-ном уровне значимости. При Примеры решения задач по эконометрике месяцев и Примеры решения задач по эконометрике (число факторов) нижнее значение Примеры решения задач по эконометрике равно 1,05, а верхнее — 1,53. Так как фактическое значение Примеры решения задач по эконометрике близко к 4, можно считать, что автокорреляция в остатках характеризуется отрицательной величиной. Чтобы проверить значимость отрицательного коэффициента автокорреляции, найдем величину:

4-4 = 4-3,81 =0,19,

что значительно меньше, чем Примеры решения задач по эконометрике. Это означает наличие в остатках автокорреляции.

  • Уравнение регрессии не может быть использовано для прогноза, так как в нем не устранена автокорреляция в остатках, которая может иметь разные причины. Автокорреляция в остатках может означать, что в уравнение не включен какой-либо существенный фактор. Возможно также, что форма связи неточна, а может быть, в рядах динамики имеется общая тенденция.

Пример задачи №14

Имеются следующие данные о величине дохода на одного члена семьи и расхода на товар Примеры решения задач по эконометрике (табл. 4.3).

Примеры решения задач по эконометрике

Требуется:

  1. Определить ежегодные абсолютные приросты доходов и расходов и сделать выводы о тенденции развития каждого ряда.
  2. Перечислить основные пути устранения тенденции для построения модели спроса на товар Примеры решения задач по эконометрике в зависимости от дохода.
  3. Построить линейную модель спроса, используя первые разности уровней исходных динамических рядов.
  4. Пояснить экономический смысл коэффициента регрессии.
  5. Построить линейную модель спроса на товар Примеры решения задач по эконометрике, включив в нее фактор времен». Интерпретировать полученные параметры.

Решение:

Обозначим расходы на товар Примеры решения задач по эконометрике через Примеры решения задач по эконометрике, а доходы одного члена семьи — через Примеры решения задач по эконометрике. Ежегодные абсолютные приросты определяются по формулам

Примеры решения задач по эконометрике

Расчеты можно оформить в виде таблицы (табл. 4.4).

Примеры решения задач по эконометрике

Значения Примеры решения задач по эконометрике не имеют четко выраженной тенденции, они варьируют вокруг среднего уровня, что означает наличие в ряде динамики линейного тренда (линейной тенденции). Аналогичный вывод можно сделать и по ряду Примеры решения задач по эконометрике: абсолютные приросты не имеют систематической направленности, они примерно стабильны, а следовательно, ряд характеризуется линейной тенденцией.

Так как ряды динамики имеют общую тенденцию к росту, то для построения регрессионной модели спроса на товар Примеры решения задач по эконометрике в зависимости от дохода необходимо устранить тенденцию. С этой целью модель может строиться по первым разностям, т.е. Примеры решения задач по эконометрике, если ряды динамики характеризуются линейной тенденцией.

Другой возможный путь учета тенденции при построении моделей — найти по каждому ряду уравнение тренда:

Примеры решения задач по эконометрике

и отклонения от него:

Примеры решения задач по эконометрике

Далее модель строится по отклонениям от тренда:

Примеры решения задач по эконометрике

При построении эконометрических моделей чаще используется другой путь учета тенденции — включение в модель фактора времени. Иными словами, модель строится по исходным данным, но в нее в качестве самостоятельного фактора включается время, т.е. Примеры решения задач по эконометрике.

Модель имеет вид

Примеры решения задач по эконометрике

Для определения параметров Примеры решения задач по эконометрике и Примеры решения задач по эконометрике применяется МНК. Система нормальных уравнений следующая:

Примеры решения задач по эконометрике

Применительно к нашим данным имеем

Примеры решения задач по эконометрике

Решая эту систему, получим:

Примеры решения задач по эконометрике

откуда модель имеет вид

Примеры решения задач по эконометрике

Коэффициент регрессии

Примеры решения задач по эконометрике

Он означает, что с ростом прироста душевого дохода на 1%-ный пункт расходы на товар Примеры решения задач по эконометрике увеличиваются со средним ускорением, равным 0,565 руб.

Модель имеет вид

Примеры решения задач по эконометрике

Применяя МНК, получим систему нормальных уравнений:

Примеры решения задач по эконометрике

Расчеты оформим в виде табл. 4.5.

Примеры решения задач по эконометрике

Система уравнений примет вид

Примеры решения задач по эконометрике

Решая ее, получим

Примеры решения задач по эконометрике

Уравнение регрессии имеет вид

Примеры решения задач по эконометрике

Параметр Примеры решения задач по эконометрике фиксирует силу связи Примеры решения задач по эконометрике и Примеры решения задач по эконометрике. Его величина означает, что с ростом дохода на одного члена семьи на 1%-ный пункт при условии неизменной тенденции расходы на товар А возрастают в среднем на 0,322 руб. Параметр Примеры решения задач по эконометрике характеризует среднегодовой абсолютный прирост расходов на товар Примеры решения задач по эконометрике под воздействием прочих факторов при условии неизменного дохода.

Пример задачи №15

По данным за 30 месяцев некоторого временного ряда Примеры решения задач по эконометрике были получены значения коэффициентов автокорреляции уровней;

Примеры решения задач по эконометрике

Требуется:

  1. Охарактеризовать структуру этого ряда, используя графическое изображение.
  2. Для прогнозирования значений Примеры решения задач по эконометрике в будущие периоды предполагается построить уравнение авторегрессии. Выбрать наилучшее уравнение, обосновать выбор. Указать общий вид этого уравнения.

Решение:

  1. Так как значения всех коэффициентов автокорреляции достаточно высокие, ряд содержит тенденцию. Поскольку наибольшее абсолютное значение имеет коэффициент автокорреляции 4-го порядка Примеры решения задач по эконометрике, ряд содержит периодические колебания, цикл этих колебаний равен 4.
Примеры решения задач по эконометрике

Наиболее целесообразно построение уравнения авторегрессии:

Примеры решения задач по эконометрике

так как значение Примеры решения задач по эконометрике = 0,97 свидетельствует о наличии очень тесной связи между уровнями ряда с лагом в 4 месяца.

Кроме того, возможно построение и множественного уравнения авторегрессии Примеры решения задач по эконометрике от Примеры решения задач по эконометрике и Примеры решения задач по эконометрике, так как Примеры решения задач по эконометрике = 0,72:

Примеры решения задач по эконометрике

Сравнить полученные уравнения и выбрать наилучшее решение можно с помощью скорректированного коэффициента детерминации.

Пример задачи №16

На основе помесячных данных о числе браков (тыс.) в регионе за последние три года была построена аддитивная модель временного ряда. Скорректированные значения сезонной компоненты за соответствующие месяцы приводятся в табл. 4.6.

Примеры решения задач по эконометрике

Уравнение тренда выглядит следующим образом:

Примеры решения задач по эконометрике

при расчете параметров тренда использовались фактические моменты времени Примеры решения задач по эконометрике.

Требуется:

  1. Определить значение сезонной компоненты за декабрь.
  2. На основе построенной модели дать прогноз общего числа браков, заключенных в течение первого квартала следующего года.

Решение:

  • Сумма значений сезонной компоненты внутри одного цикла должна быть равна нулю (в соответствии с методикой построения аддитивной модели временного ряда). Следовательно, значение сезонной компоненты за декабрь составит:
Примеры решения задач по эконометрике
  • Прогнозное значение уровня временного ряда Примеры решения задач по эконометрике в аддитивной модели есть сумма трендового значения Примеры решения задач по эконометрике и соответствующего значения сезонной компоненты Примеры решения задач по эконометрике.

Число браков, заключенных в первом квартале следующего года, есть сумма числа браков, заключенных в январе Примеры решения задач по эконометрике в феврале Примеры решения задач по эконометрике и в марте Примеры решения задач по эконометрике.

Для расчета трендовых значений воспользуемся уравнением тренда, указанным в условии задачи:

Примеры решения задач по эконометрике

Соответствующие значения сезонных компонент составят:

Примеры решения задач по эконометрике

Таким образом,

Примеры решения задач по эконометрике

Количество браков, заключенных в первом квартале следующего года, составит: 2,61 + 5,64 + 3,17 = 11,42 тыс., или 11420.

Пример задачи №17

Динамика выпуска продукции Финляндии характеризуется данными (млн долл.), представленными в табл. 4.7.

Примеры решения задач по эконометрике

Требуется:

  1. Провести расчет параметров линейного и экспоненциального трендов.
  2. Построить графики ряда динамики и трендов.
  3. Выбрать наилучший вид тренда на основании графического изображения и значения коэффициента детерминации.

Реализация типовых задач в Excel

Решение с использованием ППП MS Excel

  • Для определения параметров линейного тренда по методу наименьших квадратов используется статистическая функция ЛИНЕЙН, для определения экспоненциального тренда -ЛГРФПРИБЛ. Порядок вычисления был рассмотрен в 1-м разделе практикума. В качестве зависимой переменной в данном примере выступает время Примеры решения задач по эконометрике. Приведем результаты вычисления функций ЛИНЕЙН и ЛГРФПРИБЛ (рис. 4.2 и 4.3).
Примеры решения задач по эконометрике
Примеры решения задач по эконометрике

Запишем уравнения линейного и экспоненциального тренда, используя данные рис. 4.2 и 4.3:

Примеры решения задач по эконометрике
  1. Построение графиков осуществляется с помощью Мастера диаграмм.

Порядок построения следующий:

1) введите исходные данные или откройте существующий файл, содержащий анализируемые данные;

2) активизируйте Мастер диаграмм любым из следующих способов:

а) в главном меню выберите Вставка/Диаграмма;

б) на панели инструментов Стандартная щелкните по кнопке Мастер диаграмм;

3) в окне Тип выберите График (рис. 4.4); вид графика выберите в поле рядом со списком типов. Щелкните по кнопке Далее;

Примеры решения задач по эконометрике

4) заполните диапазон данных, как показано на рис. 4.5. Установите флажок размещения данных в столбцах (строках). Щелкните по кнопке Далее;

Примеры решения задач по эконометрике

5) заполните параметры диаграммы на разных закладках (рис. 4.6): названия диаграммы и осей, значения осей, линии сетки, параметры легенды, таблица и подписи данных. Щелкните по кнопке Далее;

Примеры решения задач по эконометрике

6) укажите место размещения диаграммы на отдельном или на имеющемся листе (рис. 4.7). Щелкните по кнопке Далее. Готовая диаграмма, отражающая динамику уровней изучаемого ряда, представлена на рис. 4.8.

Примеры решения задач по эконометрике
Примеры решения задач по эконометрике

В ППП MS Excel линия тренда может быть добавлена в диаграмму с областями гистограммы или в график. Для этого:

1) выделите область построения диаграммы; в главном меню выберите Диаграмма/Добавить линию тренда;

2) в появившемся диалоговом окне (рис. 4.9) выберите вид линии тренда и задайте соответствующие параметры. Для полиномиального тренда необходимо задать степень аппроксимирующего полинома, для скользящего среднего — количество точек усреднения.

Примеры решения задач по эконометрике

В качестве дополнительной информации на диаграмме можно отобразить уравнение регрессии и значение среднеквадратического отклонения, установив соответствующие флажки на закладке Параметры (рис. 4.10). Щелкните по кнопке ОК.

Примеры решения задач по эконометрике

На рис. 4.11 — 4.15 представлены различные виды трендов, описывающие исходные данные задачи.

Примеры решения задач по эконометрике
Примеры решения задач по эконометрике
Примеры решения задач по эконометрике

Сравним значения Примеры решения задач по эконометрике по разным уравнениям трендов: полиномиальный 6-й степени — Примеры решения задач по эконометрике = 0,9728; экспоненциальный — Примеры решения задач по эконометрике = 0,9647; линейный — Примеры решения задач по эконометрике = 0,8841; степенной — Примеры решения задач по эконометрике = 0,8470; логарифмический — Примеры решения задач по эконометрике = 0,5886.

Исходные данные лучше всего описывает полином 6-й степени. Следовательно, в рассматриваемом примере для расчета прогнозных значений следует использовать полиномиальное уравнение.

Кстати готовые на продажу задачи тут, и там же теория из учебников может быть вам поможет она.

Пример задачи №18

Имеются данные о динамике товарооборота и доходов населения России за 1997 — 1999 гг. (табл. 4.8).

Примеры решения задач по эконометрике

Требуется:

  1. Оценить параметры модели с распределенными лагами методом Алмон.
  2. Постройте таблицу результатов дисперсионного анализа. Оцените значимость построенной модели.

Решение:

Решение с использованием ППП Statistica

  1. Для построения регрессионной модели с распределенными лагами необходимо априори задать длину максимального лага, для этой задачи выберем длину 3. Тогда уравнение регрессии будет выглядеть следующим образом:
Примеры решения задач по эконометрике

Для оценки параметров этой модели согласно методу Алмон необходимо задать степень аппроксимирующего полинома. Для решения используем соответствующую процедуру ППП Statistica. Порядок расчетов следующий:

1) введите исходные данные или откройте существующий файл другого формата, содержащий анализируемые данные, в опции Data Management в окне переключения модулей (рис. 4.16). Если создаете новый файл данных, в соответствующих ячейках укажите количество строк и столбцов. В нашем случае — 2 столбца, 36 строк;

Примеры решения задач по эконометрике

2) из модуля управления данными перейдите в модуль анализа временных рядов, выбрав в меню пункт Time Series / Forecasting;

Примеры решения задач по эконометрике

3) откройте файл, содержащий данные — Open Data (рис. 4.17);

4) выделите все переменные, используемые для анализа, — Variables. Щелкните по кнопке ОК (рис. 4.18).

Примеры решения задач по эконометрике

5) щелкните по кнопке Distributed lags analysis (см. рис. 4.17);

Примеры решения задач по эконометрике

6) в окне Distributed Lags Analysis (рис. 4.19) выделите название зависимой переменной, в появляющемся окне Independent variable -название независимой переменной. В ячейке Lag length укажите значение максимального лага, в ячейке Almon polynomial lags — степень аппроксимирующего полинома. Степень полинома не должна превышать значение максимального лага. Щелкните по кнопке ОК (Begin analysis);

7) результаты расчетов — оценки регрессионных коэффициентов и значимость уравнения — приведены на рис. 4.20 и 4.21.

Примеры решения задач по эконометрике
Примеры решения задач по эконометрике

Согласно данным таблицы дисперсионного анализа (см. рис. 4.21), полученные значения Примеры решения задач по эконометрике-критерия Фишера и коэффициента детерминации Примеры решения задач по эконометрике показывают высокий уровень аппроксимации исходных данных.